Skip to main content
Log in

S-Adenosylmethionine (SAM) and antibiotic biosynthesis: effect of external addition of SAM and of overexpression of SAM biosynthesis genes on novobiocin production in Streptomyces

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The production of antibiotics in different Streptomyces strains has been reported to be stimulated by the external addition of S-adenosylmethionine (SAM) and by overexpression of the SAM synthetase gene metK. We investigated the influence of SAM addition, and of the expression of SAM biosynthetic genes, on the production of the aminocoumarin antibiotic novobiocin in the heterologous producer strain Streptomyces coelicolor M512 (nov-BG1). External addition of SAM did not influence novobiocin accumulation. However, overexpression of a SAM synthase gene stimulated novobiocin formation, concomitant with an increase of the intracellular SAM concentration. Streptomyces genomes contain orthologs of all genes required for the SAM cycle known from mammals. In contrast, most other bacteria use a different cycle for SAM regeneration. Three secondary metabolic gene clusters, coding for the biosynthesis of structurally very different antibiotics in different Streptomyces strains, were found to contain an operon comprising all five putative genes of the SAM cycle. We cloned one of these operons into an expression plasmid, under control of a strong constitutive promoter. However, transformation of the heterologous novobiocin producer strain with this plasmid did not stimulate novobiocin production, but rather showed a detrimental effect on cell viability in the stationary phase and strongly reduced novobiocin accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215

    Article  CAS  PubMed  Google Scholar 

  • Binz TM, Wenzel SC, Schnell HJ, Bechthold A, Müller R (2008) Heterologous expression and genetic engineering of the phenalinolactone biosynthetic gene cluster by using red/ET recombineering. Chembiochem 9:447–454

    Article  CAS  PubMed  Google Scholar 

  • Carlson AD, Riggin RM (2000) Development of improved high-performance liquid chromatography conditions for nonisotopic detection of isoaspartic acid to determine the extent of protein deamidation. Anal Biochem 278:150–155

    Article  CAS  PubMed  Google Scholar 

  • Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14

    Article  CAS  PubMed  Google Scholar 

  • Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP (1996) S-Adenosylmethionine and methylation. FASEB J 10:471–480

    CAS  PubMed  Google Scholar 

  • Doumith M, Weingarten P, Wehmeier UF, Salah-Bey K, Benhamou B, Capdevila C, Michel JM, Piepersberg W, Raynal MC (2000) Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea. Mol Gen Genet 264:477–485

    Article  CAS  PubMed  Google Scholar 

  • Eustáquio AS, Luft T, Wang ZX, Gust B, Chater KF, Li SM, Heide L (2003) Novobiocin biosynthesis: inactivation of the putative regulatory gene novE and heterologous expression of genes involved in aminocoumarin ring formation. Arch Microbiol 180:25–32

    Article  PubMed  Google Scholar 

  • Eustáquio AS, Gust B, Galm U, Li SM, Chater KF, Heide L (2005a) Heterologous expression of novobiocin and clorobiocin biosynthetic gene clusters. Appl Environ Microbiol 71:2452–2459

    Article  PubMed  Google Scholar 

  • Eustáquio AS, Li SM, Heide L (2005b) NovG, a DNA-binding protein acting as a positive regulator of novobiocin biosynthesis. Microbiology 151:1949–1961

    Article  PubMed  Google Scholar 

  • Floriano B, Bibb M (1996) AfsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21:385–396

    Article  CAS  PubMed  Google Scholar 

  • Fontecave M, Atta M, Mulliez E (2004) S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci 29:243–249

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Wenzel SC, Perlova O, Wang J, Gross F, Tang Z, Yin Y, Stewart AF, Müller R, Zhang Y (2008) Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res 36:e113

    Article  PubMed  Google Scholar 

  • Gehring AM, Wang ST, Kearns DB, Storer NY, Losick R (2004) Novel genes that influence development in Streptomyces coelicolor. J Bacteriol 186:3570–3577

    Article  CAS  PubMed  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    Article  CAS  PubMed  Google Scholar 

  • Haagen Y, Glück K, Fay K, Kammerer B, Gust B, Heide L (2006) A gene cluster for prenylated naphthoquinone and prenylated phenazine biosynthesis in Streptomyces cinnamonensis DSM 1042. Chembiochem 7:2016–2027

    Article  CAS  PubMed  Google Scholar 

  • Heide L (2009) The aminocoumarins: biosynthesis and biology. Nat Prod Rep 26:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Phelan VV, Farnet CM, Zazopoulos E, Bachmann BO (2008) Reassembly of anthramycin biosynthetic gene cluster by using recombinogenic cassettes. Chembiochem 9:1603–1608

    Article  CAS  PubMed  Google Scholar 

  • Huh JH, Kim DJ, Zhao XQ, Li M, Jo YY, Yoon TM, Shin SK, Yong JH, Ryu YW, Yang YY, Suh JW (2004) Widespread activation of antibiotic biosynthesis by S-adenosylmethionine in streptomycetes. FEMS Microbiol Lett 238:439–447

    Article  CAS  PubMed  Google Scholar 

  • Hullo MF, Auger S, Dassa E, Danchin A, Martin-Verstraete I (2004) The metNPQ operon of Bacillus subtilis encodes an ABC permease transporting methionine sulfoxide, d- and l-methionine. Res Microbiol 155:80–86

    Article  CAS  PubMed  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich, UK

    Google Scholar 

  • Kim DJ, Huh JH, Yang YY, Kang CM, Lee IH, Hyun CG, Hong SK, Suh JW (2003) Accumulation of S-adenosyl-l-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J Bacteriol 185:592–600

    Article  CAS  PubMed  Google Scholar 

  • Kominek LA (1972) Biosynthesis of novobiocin by Streptomyces niveus. Antimicrob Agents Chemother 1:123–134

    CAS  PubMed  Google Scholar 

  • Li L, Deng W, Song J, Ding W, Zhao QF, Peng C, Song WW, Tang GL, Liu W (2008) Characterization of the saframycin A gene cluster from Streptomyces lavendulae NRRL 11002 revealing a nonribosomal peptide synthetase system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. J Bacteriol 190:251–263

    Article  CAS  PubMed  Google Scholar 

  • Long MC, Escuyer V, Parker WB (2003) Identification and characterization of a unique adenosine kinase from Mycobacterium tuberculosis. J Bacteriol 185:6548–6555

    Article  CAS  PubMed  Google Scholar 

  • Lozada-Ramirez JD, Martinez-Martinez I, Sanchez-Ferrer A, Garcia-Carmona F (2008) S-adenosylhomocysteine hydrolase from Corynebacterium glutamicum: cloning, overexpression, purification, and biochemical characterization. J Mol Microbiol Biotechnol 15:277–286

    Article  CAS  PubMed  Google Scholar 

  • MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68

    Article  CAS  PubMed  Google Scholar 

  • Maharjan S, Oh TJ, Lee HC, Sohng JK (2008) Heterologous expression of metK1-sp and afsR-sp in Streptomyces venezuelae for the production of pikromycin. Biotechnol Lett 30:1621–1626

    Article  CAS  PubMed  Google Scholar 

  • Maxwell A, Lawson DM (2003) The ATP-binding site of type II topoisomerases as a target for antibacterial drugs. Curr Top Med Chem 3:283–303

    Article  CAS  PubMed  Google Scholar 

  • Minas W, Bailey JE, Duetz W (2000) Streptomycetes in micro-cultures: growth, production of secondary metabolites, and storage and retrieval in the 96-well format. Antonie Van Leeuwenhoek 78:297–305

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki S, Hiratsu K, Suwa M, Ishii T, Sugino F, Yamada K, Kinashi H (2003) The large linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed gene organization for secondary metabolism. Mol Microbiol 48:1501–1510

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Lezhava A, Hosaka T, Okamoto-Hosoya Y, Ochi K (2003) Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J Bacteriol 185:601–609

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Shin SK, Yang YY, Kwon HJ, Suh JW (2005) Accumulation of S-adenosylmethionine induced oligopeptide transporters including BldK to regulate differentiation events in Streptomyces coelicolor M145. FEMS Microbiol Lett 249:199–206

    Article  CAS  PubMed  Google Scholar 

  • Perlova O, Fu J, Kuhlmann S, Krug D, Stewart AF, Zhang Y, Müller R (2006) Reconstitution of the myxothiazol biosynthetic gene cluster by Red/ET recombination and heterologous expression in Myxococcus xanthus. Appl Environ Microbiol 72:7485–7494

    Article  CAS  PubMed  Google Scholar 

  • Rajkarnikar A, Kwon HJ, Suh JW (2007) Role of adenosine kinase in the control of Streptomyces differentiations: loss of adenosine kinase suppresses sporulation and actinorhodin biosynthesis while inducing hyperproduction of undecylprodigiosin in Streptomyces lividans. Biochem Biophys Res Commun 363:322–328

    Article  CAS  PubMed  Google Scholar 

  • Reddy MC, Kuppan G, Shetty ND, Owen JL, Ioerger TR, Sacchettini JC (2008) Crystal structures of Mycobacterium tuberculosis S-adenosyl-l-homocysteine hydrolase in ternary complex with substrate and inhibitors. Protein Sci 17:2134–2144

    Article  CAS  PubMed  Google Scholar 

  • Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2004) Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. Nucleic Acids Res 32:3340–3353

    Article  CAS  PubMed  Google Scholar 

  • Shin SK, Xu D, Kwon HJ, Suh JW (2006) S-Adenosylmethionine activates adpA transcription and promotes streptomycin biosynthesis in Streptomyces griseus. FEMS Microbiol Lett 259:53–59

    Article  CAS  PubMed  Google Scholar 

  • Shin SK, Park HS, Kwon HJ, Yoon HJ, Suh JW (2007) Genetic characterization of two S-adenosylmethionine-induced ABC transporters reveals their roles in modulations of secondary metabolism and sporulation in Streptomyces coelicolor M145. J Microbiol Biotechnol 17:1818–1825

    CAS  PubMed  Google Scholar 

  • Siebenberg S, Bapat PM, Lantz AE, Gust B, Heide L (2010) Reducing the variability of antibiotic production in Streptomyces by cultivation in 24-square deepwell plates. J Biosci Bioeng 109:230–234

    Google Scholar 

  • Singh AK, Syiem MB, Singh RS, Adhikari S, Rai AN (2008) A common transport system for methionine, l-methionine-dl-sulfoximine (MSX), and phosphinothricin (PPT) in the diazotrophic cyanobacterium Nostoc muscorum. Curr Microbiol 56:436–441

    Article  CAS  PubMed  Google Scholar 

  • Tucker AM, Winkler HH, Driskell LO, Wood DO (2003) S-Adenosylmethionine transport in Rickettsia prowazekii. J Bacteriol 185:3031–3035

    Article  CAS  PubMed  Google Scholar 

  • Wang JX, Breaker RR (2008) Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. Biochem Cell Biol 86:157–168

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Boghigian BA, Pfeifer BA (2007a) Improving heterologous polyketide production in Escherichia coli by overexpression of an S-adenosylmethionine synthetase gene. Appl Microbiol Biotechnol 77:367–373

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chu J, Zhuang Y, Zhang L, Zhang S (2007b) Improved production of erythromycin A by expression of a heterologous gene encoding S-adenosylmethionine synthetase. Appl Microbiol Biotechnol 75:837–842

    Article  CAS  PubMed  Google Scholar 

  • Wenzel SC, Gross F, Zhang Y, Fu J, Stewart AF, Müller R (2005) Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via red/ET recombineering. Chem Biol 12:349–356

    Article  CAS  PubMed  Google Scholar 

  • Wolpert M, Heide L, Kammerer B, Gust B (2008) Assembly and heterologous expression of the coumermycin A1 gene cluster and production of new derivatives by genetic engineering. Chembiochem 9:603–612

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Kwon HJ, Suh JW (2008) S-Adenosylmethionine induces BldH and activates secondary metabolism by involving the TTA-codon control of bldH expression in Streptomyces lividans. Arch Microbiol 189:419–426

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Feige JN, Chang AB, Anderson IJ, Brodianski VM, Vitreschak AG, Gelfand MS, Saier MH Jr (2003) A transporter of Escherichia coli specific for l- and d-methionine is the prototype for a new family within the ABC superfamily. Arch Microbiol 180:88–100

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Fen M, Shi X, Bai L, Zhou P (2008) Overexpression of yeast S-adenosylmethionine synthetase metK in Streptomyces actuosus leads to increased production of nosiheptide. Appl Microbiol Biotechnol 78:991–995

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Jin YY, Kwon HJ, Yang YY, Suh JW (2006) S-Adenosylmethionine (SAM) regulates antibiotic biosynthesis in Streptomyces spp. in a mode independent of its role as a methyl donor. J Microbiol Biotechnol 16:927–932

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the European Commission (IP 005224 ActinoGEN). X. Q. Zhao was supported by a research fellowship from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Heide.

Additional information

Communicated by Jean-Luc Pernodet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(ESM 15.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X.Q., Gust, B. & Heide, L. S-Adenosylmethionine (SAM) and antibiotic biosynthesis: effect of external addition of SAM and of overexpression of SAM biosynthesis genes on novobiocin production in Streptomyces. Arch Microbiol 192, 289–297 (2010). https://doi.org/10.1007/s00203-010-0548-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0548-x

Keywords

Navigation