Skip to main content
Log in

Genotoxic effect of caffeine in Yarrowia lipolytica cells deficient in DNA repair mechanisms

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Caffeine is a compound that can exert physiological–beneficial effects in the organism. Nevertheless, there are controversies about its protective-antioxidant and/or its negative genotoxic effect. To abound on the analysis of the possible genotoxic/antioxidant effect of caffeine, we used as research model the yeast Yarrowia lipolytica parental strain, and mutant strains (∆rad52 and ∆ku80), which are deficient in the DNA repair mechanisms. Caffeine (5 mM) showed a cytostatic effect on all strains, but after 72 h of incubation the parental and ∆ku80 strains were able to recover of this inhibitory effect on growth, whereas ∆rad52 was unable to recover. When cells were pre-incubated with caffeine and H2O2 or incubated with a mixture of both agents, a higher inhibitory effect on growth of mutant strains was observed and this effect was noticeably greater for the Δrad52 strain. The toxic effect of caffeine appears to be through a mechanism of DNA damage (genotoxic effect) that involves DSB generation since, in all tested conditions, the growth of Δrad52 strain (cells deficient in HR DNA repair mechanism) was more severely affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abreu RV, Silva-Oliveira EM, Moraes MFD, Pereira GS, Moraes-Santos T (2011) Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains. Pharmacol Biochem Behav 99(4):659–664

    Article  CAS  PubMed  Google Scholar 

  • Alao JP, Sjölander JJ, Baar J, Özbaki-Yagan N, Kakoschky B, Sunnerhagen P (2014) Caffeine stabilizes Cdc25 independently of Rad3 in Schizosaccharomyces pombe contributing to checkpoint override. Mol Microbiol 92(4):777–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andaluz E, Ciudad T, Gomez-Raja J, Calderone R, Larriba G (2006) Rad52 depletion in Candida albicans triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes. Mol Microbiol 59:1452–1472

    Article  CAS  PubMed  Google Scholar 

  • Asaad NA, Zeng ZC, Guan J, Thacker J, Iliakis G (2000) Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants. Oncogene 19(50):5788–5800

    Article  CAS  PubMed  Google Scholar 

  • Ashengroph M, Ababaf S (2014) Use of Taguchi methodology to enhance the yield of caffeine removal with growing cultures of Pseudomonas pseudoalcaligenes. Iran J Microbiol 6(6):428–436

    PubMed  PubMed Central  Google Scholar 

  • Azam S, Hadi N, Khan NU, Hadi SM (2003) Antioxidant and prooxidant properties of caffeine, theobromine and xanthine. Med Sci Monit 9(9):325–330

    Google Scholar 

  • Benkö Z, Sipiczki M (1993) Caffeine tolerance in Schizosaccharomyces pombe: physiological adaptation and interaction with theophylline. Can J Microbiol 39(5):551–554

    Article  PubMed  Google Scholar 

  • Block W, Merkle D, Meek K, Lees-Miller S (2004) Selective inhibition of the DNA-dependent protein kinase (DNA-PK) by the radiosensitizing agent caffeine. Nucleic Acids Res 32(6):1967–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bode AM, Dong Z (2007) The enigmatic effects of caffeine in cell cycle and cancer. Cancer Lett 247(1):26–39

    Article  CAS  PubMed  Google Scholar 

  • Brezova V, Slebdova A, Stasko A (2009) Coffee as a source of antioxidants: an EPR study. Food Chem 114:859–868

    Article  CAS  Google Scholar 

  • Calvo IA, Gabrielli N, Iglesias I, García S, Hoe K, Kim D, Sansó M, Zuin A, Pérez P, Ayté J, Hidalgo E (2009) Genome-wide screen of genes required for caffeine tolerance in fission yeast. PLoS One 4(8):e66

    Article  CAS  Google Scholar 

  • Campos-Góngora E, Andaluz E, Bellido A, Ruiz-Herrera J, Larriba G (2013) The RAD52 ortholog of Yarrowia lipolytica is essential for nuclear integrity and DNA repair. FEMS Yeast Res 13(5):441–452

    Article  CAS  PubMed  Google Scholar 

  • Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26(1):52–64

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay D, Somaiah A, Raghunathan D, Thirumurugan K (2014) Dichotomous effect of caffeine, curcumin, and naringenin on genomic DNA of normal and diabetic subjects. Scientifica (Cairo) 2014:649261

    Google Scholar 

  • Ciudad T, Andaluz E, Steinberg-Neifach O, Lue NF, Gow NA, Calderone RA, Larriba G (2004) Homologous recombination in Candida albicans: role of CaRad52p in DNA repair, integration of linear DNA fragments and telomere length. Mol Microbiol 53(4):1177–1194. https://doi.org/10.1111/j.1365-2958.2004.04197.x

    Article  CAS  PubMed  Google Scholar 

  • Dash SS, Gummadi SN (2006) Catabolic pathways and biotechnological applications of microbial caffeine degradation. Biotech Lett 28(24):1993–2002

    Article  CAS  Google Scholar 

  • Deplanque G, Céraline J, Lapouge G, Dufour P, Bergerat J, Klein-Soyer C (2004) Conflicting effects of caffeine on apoptosis and clonogenic survival of human K1 thyroid carcinoma cell lines with different p53 status after exposure to cisplatin or UVc irradiation. Biochem Biophys Res Comm 314(4):1100–1106

    Article  CAS  PubMed  Google Scholar 

  • Devasagayam TP, Kamat JP, Mohan H, Kesavan PC (1996) Caffeine as an antioxidant: inhibition of lipid peroxidation induced by reactive oxygen species. Biochim Biophys Acta 1282(1):63–70

    Article  PubMed  Google Scholar 

  • Ferre S (2008) An update in the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105:1067–1079

    Article  CAS  PubMed  Google Scholar 

  • Finn K, Lowndes N, Grenon M (2012) Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Cel Mol Life Sci 69:1447–1473

    Article  CAS  Google Scholar 

  • Fisone G, Borgkvist A, Usiello A (2004) Caffeine as a psychomotor stimulant: mechanism of action. Cel Mol Life Sci 67:857–872

    Article  CAS  Google Scholar 

  • Gorbunova V, Seluanov A (2016) DNA double strand break repair, aging and the chromatin connection. Mutat Res 788:2–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordillo-Bastidas D, Oceguera-Contreras E, Salazar-Montes A, González-Cuevas J, Hernández-Ortega LD, Armendáriz-Borunda J (2013) Nrf2 and Snail-1 in the prevention of experimental liver fibrosis by caffeine. World J Gastroenterol 19(47):9020–9033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gülcin I (2008) In vitro prooxidant effect of caffeine. J Enz Inhib Med Chem 23(1):149–152

    Article  CAS  Google Scholar 

  • Gutiérrez-Sánchez G, Roussos S, Augur C (2013) Effect of caffeine concentration on biomass production, caffeine degradation, and morphology of Aspergillus Tamarii. Folia Microbiol (Praha) 58(3):195–200

    Article  CAS  Google Scholar 

  • Han W, Ming M, He YY (2011) Caffeine promotes ultraviolet B-induced apoptosis in human keratinocytes without complete DNA repair. J Biol Chem 286(26):22825–22832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hapeta P, Rakicka M, Dulermo R, Gamboa-Meléndez H, Cruz-Le Coq AM, Nicaud JM, Lazar Z (2017) Transforming sugars into fat—lipid biosynthesis using different sugars in Yarrowia lipolytica. Yeast 34(7):293–304

    Article  CAS  PubMed  Google Scholar 

  • Heckman M, Weil J, González de Mejía E (2010) Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 75(3):R77–R87

    Article  CAS  PubMed  Google Scholar 

  • Hinz JM (2010) Role of homologous recombination in DNA interstrand crosslink repair. Environ Mol Mutagen 51(6):582–603

    CAS  PubMed  Google Scholar 

  • Kretzschmar A, Otto C, Holz M, Werner S, Hübner L, Barth G (2013) Increased homologous integration frequency in Yarrowia lipolytica strains defective in non-homologous end-joining. Curr Genet 59(1–2):63–72

    Article  CAS  PubMed  Google Scholar 

  • Lee C (2000) Antioxidant ability of caffeine and its metabolites based on the study of oxygen radical absorbing capacity and inhibition of LDL peroxidation. Clin Chim Acta 295(1–2):141–154

    Article  CAS  PubMed  Google Scholar 

  • León-Carmona JR, Galano A (2011) Is caffeine a good scavenger of oxygenated free radicals? J Phys Chem B 115(15):4538–4546

    Article  CAS  PubMed  Google Scholar 

  • Mercer J, Gray K, Figg N, Kumar S, Bennett M (2012) The methyl xanthine caffeine inhibits DNA damage signaling and reactive species and reduces atherosclerosis in ApoE (−/−) mice. Arterioscler Thromb Vasc Biol 32(10):2461–2467

    Article  CAS  PubMed  Google Scholar 

  • Metro D, Cernaro V, Santoro D, Papa M, Buemi M, Benvenga S, Manasseri L (2017) Beneficial effects of oral pure caffeine on oxidative stress. J Clin Transl Endocrinol 10:22–27

    PubMed  PubMed Central  Google Scholar 

  • Nicaud JM (2012) Yarrowia lipolytica. Yeast 29(10):409–418

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Ueki N (2007) Clinical importance of caffeine dependence and abuse. Psychiatry Clin Neurosci 61(3):263–268

    Article  CAS  PubMed  Google Scholar 

  • Prasanthi J, Dasari B, Marwarha G, Larson T, Chen X, Geiger J, Ghribi O (2010) Caffeine protects against oxidative stress and Alzheimer’s disease-like pathology in rabbit hippocampus induced by cholesterol-enriched diet. Free Radical Biol Med 49(7):1212–1220

    Article  CAS  Google Scholar 

  • Sabisz M, Skladanowski A (2008) Modulation of cellular response to anticancer treatment by caffeine: inhibition of cell cycle checkpoints, DNA repair and more. Current Pharm Biotech 9(4):325–336

    Article  CAS  Google Scholar 

  • Salmones D, Mata G, Waliszewski KN (2005) Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation. Bioresour Technol 96(5):537–544

    Article  CAS  PubMed  Google Scholar 

  • Salomone F, Galvano F, Li Volti G (2017) Molecular bases underlying the hepatoprotective effects of coffee. Nutrients 9(1):85

    Article  CAS  PubMed Central  Google Scholar 

  • Schwartz C, Frogue K, Ramesh A, Misa J, Wheeldon I (2017) CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica. Biotechnol Bioeng 114(12):2896–2906

    Article  CAS  PubMed  Google Scholar 

  • Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41

    Article  CAS  PubMed  Google Scholar 

  • Shimizu I, Yoshida Y, Suda M, Minamino T (2014) DNA damage response and metabolic disease. Cell Metab 20(6):967–977

    Article  CAS  PubMed  Google Scholar 

  • Stein A, Kalifa L, Sia EA (2015) Members of the RAD52 epistasis group contribute to mitochondrial homologous recombination and double-strand break repair in Saccharomyces cerevisiae. PLoS Genet 11(11):e1005664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summers RM, Mohanty SK, Gopishetty S, Subramanian M (2015) Genetic characterization of caffeine degradation by bacteria and its potential applications. Microb Biotechnol 8(3):369–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66(4):630–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari KK, Chu C, Couroucli X, Moorthy B, Lingappan K (2014) Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro. Biochem Biophys Res Commun 450(4):1345–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varma S, Hegde K (2010) Prevention of oxidative damage to lens by caffeine. J Ocul Pharmacol Ther 26(1):73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbeke J, Beopoulos A, Nicaud JM (2013) Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains. Biotechnol Lett 35(4):571–576

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Boecker W, Wang H, Wang X, Guan J, Thompson LH, Nickoloff J, Iliakis G (2004) Caffeine inhibits homology-directed repair of I-SceI-induced DNA double-strand breaks. Oncogene 23(3):824–834

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by National Council of Science and Technology of México (CONACYT) with a fellowship to CAQG (Grant No. 581423), and the UANL-PAICYT Program under Grant No. CS1166-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Campos-Góngora.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quiñones-González, C.A., Arredondo-Mendoza, G.I., Jiménez-Salas, Z. et al. Genotoxic effect of caffeine in Yarrowia lipolytica cells deficient in DNA repair mechanisms. Arch Microbiol 201, 991–998 (2019). https://doi.org/10.1007/s00203-019-01658-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01658-4

Keywords

Navigation