Skip to main content

Advertisement

Log in

Revisiting the plant growth-promoting rhizobacteria: lessons from the past and objectives for the future

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Plant beneficial rhizobacteria (PBR) is a group of naturally occurring rhizospheric microbes that enhance nutrient availability and induce biotic and abiotic stress tolerance through a wide array of mechanisms to enhance agricultural sustainability. Application of PBR has the potential to reduce worldwide requirement of agricultural chemicals and improve agro-ecological sustainability. The PBR exert their beneficial effects in three major ways; (1) fix atmospheric nitrogen and synthesize specific compounds to promote plant growth, (2) solubilize essential mineral nutrients in soils for plant uptake, and (3) produce antimicrobial substances and induce systemic resistance in host plants to protect them from biotic and abiotic stresses. Application of PBR as suitable inoculants appears to be a viable alternative technology to synthetic fertilizers and pesticides. Furthermore, PBR enhance nutrient and water use efficiency, influence dynamics of mineral recycling, and tolerance of plants to other environmental stresses by improving health of soils. This report provides comprehensive reviews and discusses beneficial effects of PBR on plant and soil health. Considering their multitude of functions to improve plant and soil health, we propose to call the plant growth-promoting bacteria (PGPR) as PBR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahkami AH, White RA III, Handakumbura PP, Jansson C (2017) Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere 3(2017):233–243

    Google Scholar 

  • Ahn IP, Lee SW, Suh SC (2007) Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPRI. Mol Plant Microbe Interact 20:759–768

    CAS  PubMed  Google Scholar 

  • Alavi P, Starcher M, Zachow C, Müller H, Berg G (2013) Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM14405T. Front Plant Sci 4:141

    PubMed  PubMed Central  Google Scholar 

  • Anuradha N, Satyavathi CT, Bharadwaj C, Nepolean T, Sankar SM, Singh SP, Meena MC, Singhal T, Srivastava RK (2017) Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Front Plant Sci 8:412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aras S, Arıkan S, Ipek M, Esitken A, Pırlak L, Dönmez MF, Metin T (2018) Plant growth promoting rhizobacteria enhanced leaf organic acids, FCR activity and Fe nutrition of apple under lime soil conditions. Acta Physiol Plant 40:120. https://doi.org/10.1007/s11738-018-2693-9

    Article  CAS  Google Scholar 

  • Arif MS, Muhammad RIAZ, Shahzad SM, Yasmeen T, Shafaqat ALI, Akhtar MJ (2017) Phosphorus-mobilizing rhizobacterial strain Bacillus cereus GS6 improves symbiotic efficiency of soybean on an Aridisol amended with phosphorus-enriched compost. Pedosphere 27(6):1049–1061

    Google Scholar 

  • Arıkan S, Esitken A, Ipek M, Aras S, Sahin M, Pırlak L, Dönmez MF, Metin T (2018) Effect of plant growth promoting rhizobacteria on Fe acquisition in peach (Prunus persica L.) under calcareous soil conditions. J Plant Nutr 41:2141–2150

    Google Scholar 

  • Arnou DI (1953) Soil and fertilizer phosphorus in crop nutrition (IV). In: Pierre WH, Noramn AG (eds) Academic Press, New York

  • Arora NK, Khare E, Oh JH, Kang SC, Maheshwari DK (2008) Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24(4):581–585

    Google Scholar 

  • Asari S, Tarkowská D, Rolcík J, Novák O, Velázquez-Palmero D, Bejai S, Meijer J (2017) Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta 245:15–30

    CAS  PubMed  Google Scholar 

  • Badar R, Nisa Z, Ibrahim S (2015) Supplementation of P with rhizobial inoculants to improve growth of Peanut plants. Int J Appl Res 1:19–23

    Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G et al (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in anti-oxidants. New Phytol 180:501–510

    CAS  PubMed  Google Scholar 

  • Bhat MA (2019) Plant growth promoting rhizobacteria (PGPR) for sustainable and eco-friendly agriculture. Acta Sci Agric 3:23–25

    Google Scholar 

  • Bhattacharyya P, Jha D (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    CAS  PubMed  Google Scholar 

  • Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-, Hg- and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286

    PubMed  Google Scholar 

  • Braun V, Hantke K (2013) The tricky ways bacteria cope with iron limitation. In: Chakraborty R (eds) Iron uptake in bacteria with emphasis on E. coli and Pseudomonas. Springer briefs in biometals. Springer, Berlin. https://doi.org/10.1007/978-94-007-6088-2_2

  • Chang WT, Chen CS, Wang SL (2003) An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as carbon source. Curr Microbiol 47:102–108

    CAS  PubMed  Google Scholar 

  • Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z (2018) Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun 9:3429

    PubMed  PubMed Central  Google Scholar 

  • Disi JO, Mohammad HK, Lawrence K, Kloepper J, Fadamiro HA (2019) Soil bacterium can shape belowground interactions between maize, herbivores and entomopathogenic nematodes. Plant Soil 437:83–92

    CAS  Google Scholar 

  • Doran J, Parkin T (1996) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. Soil Science Society of America, Madison, pp 3–21

    Google Scholar 

  • Egamberdieva, Dilfuza, Jaime A, Teixeira da Silva (2015) Medicinal plants and PGPR: a new frontier for phytochemicals. Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer, Berlin, pp 287–303

  • Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic 110:324–327

    CAS  Google Scholar 

  • Fan X, Zhang S, Xiaodan MO, Yuncong LI, Yuqing FU, Zhiguang LIU (2017) Effects of plant growth-promoting rhizobacteria and N source on plant growth and N and P uptake by tomato grown on calcareous soils. Pedosphere 27(6):1027–1036

    Google Scholar 

  • Ghazijahani N, Hadavi E, Jeong BR (2014) Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.). Front Plant Sci 5:573

    PubMed  PubMed Central  Google Scholar 

  • Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 15:203. https://doi.org/10.1186/s12934-016-0603-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Grover M, Nain L, Singh SB, Saxena AK (2010) Molecular and biochemical approaches for characterization of antifungal trait of a potent biocontrol agent Bacillus subtilis RP24. Curr Microbiol 60(2):99–106

    CAS  PubMed  Google Scholar 

  • Guo Q, Li Y, Lou Y, Shi M, Jiang Y, Zhou J, Sun Y, Xue Q, Lai H (2019) Bacillus amyloliquefaciens Ba13 induces plant systemic resistance and improves rhizosphere micro ecology against tomato yellow leaf curl virus disease. Appl Soil Ecol 137:154–166

    Google Scholar 

  • Gupta V, Rovira A, Roger D (2011) Principles and management of soil biological factors for sustainable rainfed farming systems. In: Tow P, Cooper I, Partridge I, Birch C (eds) Rainfed farming systems. Springer, Dordrecht, pp 149–184

    Google Scholar 

  • Habib SH, Kausar H, Saud H (2016) Plant growth promoting rhizobacteria enhance salinity stress tolerance in Okra through ROS-Scavenging enzymes. Biol Med Res Int 2016:1–10

    Google Scholar 

  • Haney CH, Wiesmann CL, Shapiro LR, Melnyk RA, O’Sullivan LR, Khorasani S, Xiao L, Han J, Bush J, Carrillo J (2018) Rhizosphere-associated Pseudomonas induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens. Mol Ecol 27:1833–1847

    CAS  PubMed  Google Scholar 

  • Harman GE, Uphoff N (2019) Symbiotic root-endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica 209:1–25

    Google Scholar 

  • Hassan MK, McInroy JA, Jones J, Shantharaj D, Liles MR, Kloepper JW (2019a) Pectin-rich amendment enhances soybean growth promotion and nodulation mediated by Bacillus velezensis strains. Plants 8:120

    CAS  PubMed Central  Google Scholar 

  • Hassan MK, McInroy JA, Kloepper JW (2019b) The interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: a review. Agriculture 9(7):142. https://doi.org/10.3390/agriculture9070142

    Article  CAS  Google Scholar 

  • Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6(1):58

    PubMed  PubMed Central  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Google Scholar 

  • Hossain MT, Khan A, Harun-Or-Rashid M, Chung YR (2019) A volatile producing endophytic Bacillus siamensis YC7012 promotes root development independent on auxin or ethylene/jasmonic acid pathway. Plant Soil 439:309–324

    CAS  Google Scholar 

  • Islam F, Yasmeen T, Ali S, Ali B, Farooq MA, Gill RA (2015) Priming-induced antioxidative responses in two wheat cultivars under saline stress. Acta Physiol Plant 37(8):1–12

    CAS  Google Scholar 

  • Islam MT (2008) Disruption of ultra-structure and cytoskeleton network is involved with biocontrol of damping-off pathogen Aphanomyces cochlioides by Lysobacter sp. SB-K88. Biol Control 46:312–321

    Google Scholar 

  • Islam MT, Fukushi Y (2010) Growth inhibition and excessive branching in Aphanomyces cochlioides induced by 2,4-diacetylphloroglucinol is linked to disruption of filamentous actin cytoskeleton in the hyphae. World J Microbiol Biotechnol 26:1163–1170

    CAS  PubMed  Google Scholar 

  • Islam MT, Hossain MM (2013) Biological control of peronosporomycete phytopathogen by bacterial antagonist. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Heidelberg, pp 167–218

    Google Scholar 

  • Jaiswal AK, Elad Y, Graber ER, Frenkel O (2014) Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biol Biochem 69:110–118

    CAS  Google Scholar 

  • Jiang CH, Xie YS, Zhu K, Wang N, Li ZJ, Yu GJ, Guo JH (2019) Volatile organic compounds emitted by Bacillus sp. JC03 promote plant growth through the action of auxin and strigolactone. Plant Growth Regul 87:317–328

    CAS  Google Scholar 

  • Jimtha CJ, Jishma P, Sreelekha S, Chithra S, Radhakrishnan EK (2017) Antifungal properties of prodigiosin producing rhizospheric Serratia sp. Rhizosphere 3:105–108

    Google Scholar 

  • Johansen JE, Binnerup SJ (2002) Contribution of Cytophaga-like bacteria to the potential of turnover of carbon, nitrogen, and phosphorus by bacteria in the rhizosphere of barley (Hordeum vulgare L.). Microb Ecol 43:298–306

    CAS  PubMed  Google Scholar 

  • Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35(2):323–331

    CAS  Google Scholar 

  • Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee IJ (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Elec J Biotechnol 21:58–64

    CAS  Google Scholar 

  • Khan N, Zandi P, Ali S, Mehmood A, Shahid MA (2018) Impact of salicylic acid and PGPR on the drought tolerance and phytoremediation potential of helianthus annus. Front Microbiol 9:2507. https://doi.org/10.3389/fmicb.2018.02507

    Article  PubMed  PubMed Central  Google Scholar 

  • Khilyas IV, Shirshikova TV, Matrosova LE, Sorokina AV, Sharipova MR, Bogomolnaya LM (2016) Production of siderophores by Serratia marcescens and the role of MacAB efflux pump in siderophore secretion. Bio Nano Sci. https://doi.org/10.1007/s12668-016-0264-3

    Article  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schiroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    CAS  Google Scholar 

  • Kudoyarova GR, Vysotskaya LB, Arkhipova TN, Kuzmina LY, Galimsyanova NF, Gabbasova SLV, Ilusa M, Melentiev AI, Veselov YuS (2017) Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta Physiol lant. 39:253

    Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R (2015) Characterization of bacterial strains and their impact on plant growth promotion and yield of wheat and microbial populations of soil. Afr J Agric Res 10(12):1367–1375

    CAS  Google Scholar 

  • Kumar A, Singh VK, Tripathi V, Singh PP, Singh AK (2018) Plant growth-promoting rhizobacteria (PGPR): perspective in agriculture under biotic and abiotic stress. In: Crop improvement through microbial biotechnology. Elsevier, Oxford, pp 333–342

  • Kumar A, Verma JP (2017) Does plant–microbe interaction confer stress tolerance in plants?: a review. Microbiol Res 207:41–52

    PubMed  Google Scholar 

  • Kumawat K, Sharma P, Sirari A, Singh I, Gill B, Singh U, Saharan K (2019) Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp. (LSBR-3) for improving plant growth, nutrientt acquisition and soil health in soybean. World J Microbiol Biotechnol 35:47

    CAS  PubMed  Google Scholar 

  • Lal R (2013) Soils and ecosystem services. In: Lal R, Lorenz K, Hüttl RF, Schneider BU, Braun JV (eds) Ecosystem services and carbon sequestration in the biosphere. Springer, Dordrecht, pp 11–38

    Google Scholar 

  • Liu H, He Y, Jiang H, Peng H, Huang X, Zhang X, Thomashow LS, Xu Y (2007) Characterization of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad-spectrum antifungal activity from green pepper rhizosphere. Curr Microbiol 54(4):302–306

    CAS  PubMed  Google Scholar 

  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur J Plant Pathol 119(3):265–278

    CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    CAS  PubMed  Google Scholar 

  • Maheshwari DK, Dubey RC, Agarwal M, Dheeman S, Aeron A, Bajpai VK (2015) Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1. Ecol Eng 81:272–277

    Google Scholar 

  • Majeed A, Muhammad Z, Ahmad H (2018) Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep 37(12):1599–1609

    CAS  PubMed  Google Scholar 

  • Malviya J, Singh K (2012) Characterization of novel plant growth promoting and biocontrol strains of fluorescent Pseudomonads for crop. J Int Med Res 1:235–244

    Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of inceptisol and alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017a) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172. https://doi.org/10.3389/fpls.2017.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1(1):53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangl J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    CAS  PubMed  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Kumar A, Aeron A, Mishra PK, Bisht JK, Pattanayaka A, Naveed M, Dotaniya ML (2017b) Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecol Eng 107:8–32

    Google Scholar 

  • Mercado-Blanco J, Bakker PAHM (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92:367–389

    PubMed  Google Scholar 

  • Mohanram S, Kumar P (2019) Rhizosphere microbiome: revisiting the synergy of plant–microbe interactions. Ann Microbiol 69:307–320

    Google Scholar 

  • Munees A (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. Biotechnology 5:111–121

    Google Scholar 

  • Mwajita M, Murage H, Tani A, Kahangi E (2013) Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. Sprigerplus 2:606

    Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    PubMed  Google Scholar 

  • Nawaz HH, Rajaofera MN, He Q, Anam U, Lin C, Miao W (2018) Evaluation of antifungal metabolites activity from Bacillus licheniformis OE-04 against Colletotrichum gossypii. Pest Biochem Physiol. https://doi.org/10.1016/j.pestbp.2018.02.007

    Article  Google Scholar 

  • Noumavo P, Agbodjato N, Gachomo E, Salami H, Farid B, Adjanohoun A, Kotchoni S, Lamine B (2015) Metabolic and biofungicidal properties of maize rhizobacteria for growth promotion and plant disease resistance. Afr J Biotechnol 14:811–819

    CAS  Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Ahmed AH (2018a) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    CAS  PubMed  Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, Al-Harrasi A (2018b) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    CAS  PubMed  Google Scholar 

  • Pandey A, Yarzábal LA (2019) Bioprospecting cold-adapted plant growth promoting microorganisms from mountain environments. Appl Microbiol Biotechnol 103:643

    CAS  PubMed  Google Scholar 

  • Potarzycki J, Grzebisz W (2009) Effect of zinc foliar application on grain yield of maize and its yielding components. Plant Soil Environ 55:519–527

    CAS  Google Scholar 

  • Rakshit A, Kumari S, Pal S, Singh A, Singh HB (2015) Bio-priming mediated nutriant use efficiency of crop species. Nutr Use Efficiency Basics Adv 2015:181–191

    Google Scholar 

  • Reichling J (2018) Plant–microbe interactions and secondary metabolites with antibacterial, antifungal and antiviral properties. Annu Plant Rev 324:214–347

    Google Scholar 

  • Rishad KS, Rebello S, Shabanamol PS, Jisha MS (2016) Biocontrol potential of Halotolerant bacterial chitinase from high yielding novel Bacillus Pumilus MCB-7 autochthonous to mangrove ecosystem. Pest Biochem Physiol 137:36–41

    Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100:4927–4932

    CAS  PubMed  Google Scholar 

  • Saleem M, Law AD, Sahib MR, Pervaiz ZH, Zhang Q (2018) Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere 6:47–51

    Google Scholar 

  • Sarkar A, Saha M, Meena VS (2017) Plant beneficial rhizospheric microbes (PBRMs): prospects for increasing productivity and sustaining the resilience of soil fertility. In: Meena V, Mishra P, Bisht J, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 3–29

    Google Scholar 

  • Scagliola M, Pii Y, Mimmo T, Cesco S, Ricciuti P, Crecchio C (2016) Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. Plant Physiol Biochem 107:187–196

    CAS  PubMed  Google Scholar 

  • Schloter M, Nannipieri P, Sorensen SJ, van Elsas JD (2018) Microbial indicators for soil quality. Biol Fertil Soils 54:1–10

    CAS  Google Scholar 

  • Schmid M, Hartmann A (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Mol Plant Microbe Interact 26:937–945

    PubMed  Google Scholar 

  • Selvakumar G, Bindu GH, Bhatt RM, Upreti KK, Paul AM, Asha A, Shweta K, Sharma M (2018) Osmotolerant cytokinin producing microbes enhance tomato growth in deficit irrigation conditions. Proc Natl Acad Sci India Sect B Biol Sci 88(2):459–465

    CAS  Google Scholar 

  • Sen S, Chandrasekhar CN (2014) Effect of PGPR on growth promotion of rice (Oryza sativa L.) under salt stress. Asian J Plant Sci Res 4:62–67

    Google Scholar 

  • Shaikh S, Wani S, Sayyed R (2018) Impact of interactions between rhizosphere and rhizobacteria: a review. J Bacteriol Mycol 5:1058

    Google Scholar 

  • Shameer S, Prasad TNVKV (2018) Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul 84:603–615

    CAS  Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Mahajan MM, Prasanna R, Singh S, Kaushik R, Singh RN, Kumar K, Saxena AK (2017a) Deciphering the mechanisms of endophyte-mediated biofortification of Fe and Zn in wheat. J Plant Growth Regul 37(1):174–182

    Google Scholar 

  • Singh D, Rajawat MVS, Kaushik R, Prasanna R, Saxena AK (2017b) Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant Soil 416(1–2):107–116

    CAS  Google Scholar 

  • Slimene IB, Tabbene O, Gharbi D, Mnasri B, Schmitter JM, Urdaci MC, Limam F (2015) Isolation of a chitinolytic Bacillus licheniformis S213 strain exerting a biological control against phoma medicaginis infection. Biotechnol Appl Biochem 175(7):3494–3506

    Google Scholar 

  • Stephane C, Brion D, Jerzy N, Christophe C, Essaid AB (2005) Use of plant growth bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Google Scholar 

  • Subbanna ARNS, Khan MS, Shivashankara H (2016) Characterization of antifungal Paenibacillus illinoisensis strain UKCH21 and its chitinolytic properties. Afr J Microbiol Res 10(34):1380–1387

    CAS  Google Scholar 

  • Sulieman S, Chien V, Esfahani M, Yasuko W, Rie N, Chung T, Dong V, Tran L (2015) DT2008: a promising new genetic resource for improved drought tolerance in soybean when solely dependent on symbiotic N2 fixation. BioMed Res. https://doi.org/10.1155/2015/687213

    Article  Google Scholar 

  • Sun C, Johnson J, Cai D, Sherameti I, Oelmüeller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017

    CAS  PubMed  Google Scholar 

  • Talbi C, Sánchez C, Hidalgo-Garcia A, González E, Arrese-Igorm C, Girard L, Bedmar E, Delgado MJ (2012) Enhanced expression of Rhizobiumetli cbb3 oxidase improves drought tolerance of common bean symbiotic nitrogen fixation. J Exp Bot 63:5035–5043

    CAS  PubMed  Google Scholar 

  • Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signalling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    PubMed  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathol 91:728–734

    Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Jaiswal DK (2014) Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biol Biochem 70:33–37

    CAS  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286

    Google Scholar 

  • Wang C, Wang Z, Qiao X, Li Z, Li F, Chen M, Wang Y, Huang Y, Cui H (2013) Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiol Lett 341(1):45–51

    CAS  PubMed  Google Scholar 

  • Weise T, Thürmer A, Brady S, Kai M, Daniel R, Gottschalk G, Piechulla B (2014) VOC emission of various Serratia species and isolates and genome analysis of Serratia plymuthica 4Rx13. FEMS Microbiol Lett 352:45–53

    CAS  PubMed  Google Scholar 

  • Wu L, Kobayashi Y, Wasaki J, Koyama H (2018) Organic acid excretion from roots: a plant mechanism for enhancing phosphorus acquisition, enhancing aluminiumaluminum tolerance, and recruiting beneficial rhizobacteria. Soil Sci Plant Nutr 64(6):697–704

    CAS  Google Scholar 

  • Wu Z, Peng Y, Guo L, Li C (2014) Root colonization of encapsulated Klebsiella oxytoca Rs-5 on cotton plants and its promoting growth performance under salinity stress. Eur J Soil Biol 60:81–87

    CAS  Google Scholar 

  • Xu Z, Zhang H, Sun X, Liu Y, Yan W, Xun W, Shen Q, Zhang R (2019) Bacillus velezensis wall teichoic acids are required for biofilm formation and root colonization. Appl Environ Microbiol 85:e02116–e02118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Junjiang S, Williams E (2015) Use of non-agrobacterium bacterial species for plant transformation. US Patent No. 20150040266, 5 Feb 2015

  • Zhalnina K, Louie KB, Hao Z, Mansoori N, Da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470

    CAS  PubMed  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Google Scholar 

Download references

Acknowledgements

AA and EK are thankful to National Research Foundation (NRF) of Korea. VSM, AP, HR, MC are thankful to Indian Council of Agricultural Research (ICAR), New Delhi India. DKM wishes to acknowledge UGC, UCOST and CSIR. MTI is thankful to the World Bank for funding this work through a Higher Education Quality Enhancement. DKM and AA conceived, outlined and wrote a part of the article. AA and SKM wrote the first draft of the manuscript and VSM designed figures, tabulation and finalizing the manuscript. All authors contributed equally to the work

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijay Singh Meena, Vivek K. Bajpai or Young-Kyu Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aeron, A., Khare, E., Jha, C.K. et al. Revisiting the plant growth-promoting rhizobacteria: lessons from the past and objectives for the future. Arch Microbiol 202, 665–676 (2020). https://doi.org/10.1007/s00203-019-01779-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01779-w

Keywords

Navigation