Skip to main content
Log in

Yeast engineered translucent cell wall to provide its endosymbiont cyanobacteria with light

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In this study, relationship between translucent property of yeast cell wall and occurrence of cyanobacteria inside the yeast vacuole was examined. Microscopic observations on fruit yeast Candida tropicalis showed occurrence of bacterium-like bodies inside the yeast vacuole. Appearance of vacuoles as distinct cavities indicated the perfect harvesting of light by the yeast’s cell wall. Transmission electron microscopy observation showed electron-dense outer and electron-lucent inner layers in yeast cell wall. Cyanobacteria-specific 16S rRNA gene was amplified from total DNA of yeast. Cultivation of yeast in distilled water led to excision of intracellular bacteria which grew on cyanobacteria-specific medium. Examination of wet mount and Gram-stained preparations of excised bacteria showed typical bead-like trichomes. Amplification of cyanobacteria-specific genes, 16S rRNA, cnfR and dxcf, confirmed bacterial identity as Leptolyngbya boryana. These results showed that translucent cell wall of yeast has been engineered through evolution for receiving light for vital activities of cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams DG (2002) Cyanobacteria in symbiosis with hornworts and liverworts. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Springer, Netherlands, pp 117–135

  • Adams DG, Bergman B, Nierzwicki-Bauer SA, Duggan PS, Rai AN, Schüßler A (2013) Cyanobacterial-plant symbioses. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic biology and symbiotic associations. Springer, Berlin, pp 359–400

  • Ahmadjian V (1993) The lichen symbiosis. Wiley, New York

    Google Scholar 

  • Almon H, Böhme H (1980) Components and activity of the photosynthetic electron transport system of intact heterocysts isolated from the blue–green alga Nostoc muscorum. Biochim Biophys Acta 592:113–120

    CAS  PubMed  Google Scholar 

  • Bae G, Choi G (2008) Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol 59:281–311

    CAS  PubMed  Google Scholar 

  • Bandyopadhyay A, Elvitigala T, Liberton M, Pakrasi HB (2013) Variations in the rhythms of respiration and nitrogen fixation in members of the unicellular diazotrophic cyanobacterial genus Cyanothece. Plant Physiol 161:1334–1346

    CAS  PubMed  Google Scholar 

  • Barghoorn ES (1971) The oldest fossils. Sci Am 224:30–43

    CAS  PubMed  Google Scholar 

  • Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164

    CAS  PubMed  Google Scholar 

  • Bielecki S, Galas E (1991) Microbial β-glucanases different from cellulases. Crit Rev Biotechnol 10:275–304

    CAS  PubMed  Google Scholar 

  • Blumenstein A et al (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15:1833–1838

    CAS  PubMed  Google Scholar 

  • Briggs WR, Spudich JL (2005) Handbook of photosensory receptors. Wiley, New York

    Google Scholar 

  • Carpenter EJ, Janson S (2000) Intracellular cyanobacterial symbionts in the marine diatom Climacodium frauenfeldianum (Bacillariophyceae). Eur J Phycol 36:540–544

    Google Scholar 

  • Cheng H-R, Jiang N (2006) Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett 28:55–59

    CAS  PubMed  Google Scholar 

  • Davis SJ, Vener AV, Vierstra RD (1999) Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286:2517–2520

    CAS  PubMed  Google Scholar 

  • Dutta P, Khatua M, Dutta J, Prasad R (2003) Use of Chitosan-DMAc/LiCl gel as drug carriers. Int J Chem Sci 1:93

    CAS  Google Scholar 

  • Edgar RS et al (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards H, Holder J, Wynn-Williams D (1998) Comparative FT-Raman spectroscopy of Xanthoria lichen-substratum systems from temperate and Antarctic habitats. Soil Biol Biochem 30:1947–1953

    CAS  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giraud E et al (2002) Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. Nature 417:202

    CAS  PubMed  Google Scholar 

  • Gualtieri P (2001) Chapter 10 Rhodopsin-like-proteins: light detection pigments in Leptolyngbya, Euglena, Ochromonas, Pelvetia. In: Häder D-P, Breure AM (eds) Comprehensive series in photosciences. Elsevier, pp 281–295

  • Gupta V, Natarajan C, Kumar K, Prasanna R (2011) Identification and characterization of endoglucanases for fungicidal activity in Anabaena laxa (Cyanobacteria). J Appl Phycol 23:73–81

    CAS  Google Scholar 

  • Haberle RM et al (1993) Atmospheric effects on the utility of solar power on mars. In: Resources of near-earth space, p 845

  • Hasegawa M et al (2018) Molecular characterization of DXCF cyanobacteriochromes from the cyanobacterium Acaryochloris marina identifies a blue-light power sensor. J Biol Chem 293:1713–1727

    CAS  PubMed  Google Scholar 

  • Herrera-Estrella A, Horwitz BA (2007) Looking through the eyes of fungi: molecular genetics of photoreception. Mol Microbiol 64:5–15

    CAS  PubMed  Google Scholar 

  • Heydari S, Siavoshi F, Ebrahimi H, Sarrafnejad A, Sharifi AH (2019) Excision of endosymbiotic bacteria from yeast under aging and starvation stresses. Infect Genet Evol 78:104141

    PubMed  Google Scholar 

  • Hien NH, Fleet GH (1983) Separation and characterization of six (1 leads to 3)-beta-glucanases from Saccharomyces cerevisiae. J bacteriol 156:1204–1213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmeister M, Martin W (2003) Interspecific evolution: microbial symbiosis, endosymbiosis and gene transfer. Environ Microbiol 5:641–649

    CAS  PubMed  Google Scholar 

  • Hughes J et al (1997) A prokaryotic phytochrome. Nature 386:663

    CAS  PubMed  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    CAS  PubMed  Google Scholar 

  • Jiang Z, Swem LR, Rushing BG, Devanathan S, Tollin G, Bauer CE (1999) Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science 285:406–409

    CAS  PubMed  Google Scholar 

  • Karniol B, Wagner JR, Walker JM, Vierstra RD (2005) Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochem J 392:103–116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kehoe DM, Grossman AR (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273:1409–1412

    CAS  PubMed  Google Scholar 

  • Kluge M (2002) A fungus eats a cyanobacterium: the story of the Geosiphon pyriformis endocyanosis. Biol Environ J (PRIA) JSTOR 102:11–14.

  • Kluge M, Mollenhauer D, Wolf E, Schüßler A (2002) The Nostoc–Geosiphon endocytobiosis. In: Cyanobacteria in symbiosis. Springer, pp 19–30

  • Kneip C, Lockhart P, Voß C, Maier U-G (2007) Nitrogen fixation in eukaryotes—new models for symbiosis. BMC Evol Biol 7:55

    PubMed  PubMed Central  Google Scholar 

  • Lipke PN, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180:3735–3740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Evans EH, McColl SM, Saunders VA (1997) Identification of cyanobacteria by polymorphisms of PCR-amplified ribosomal DNA spacer region. FEMS Microbiol Lett 153:141–149

    CAS  Google Scholar 

  • Lucock M et al (2018) Photobiology of vitamins. Nutr Rev 76:512–525

    PubMed  Google Scholar 

  • Manchester LC et al (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59:403–419

    CAS  PubMed  Google Scholar 

  • Meeks JC (1998) Symbiosis between nitrogen-fixing cyanobacteria and plants. J Biosci 48:266–276

    Google Scholar 

  • Meunier PC, Colon-Lopez MS, Sherman LA (1997) Temporal changes in state transitions and photosystem organization in the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. Plant Physiol 115:991–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moran NA, Wernegreen JJ (2000) Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol 15:321–326

    CAS  PubMed  Google Scholar 

  • Mullineaux CW (2001) How do cyanobacteria sense and respond to light? Mol Microbiol 41:965–971

    CAS  PubMed  Google Scholar 

  • Murray PA, Zinder SH (1985) Nutritional requirements of Methanosarcina sp. strain TM-1. Appl Environ Microbiol 50:49–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols HW (1973) Growth media-freshwater. In: JR S (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, pp 7–24

  • Nicol S (1991) Life after death for empty shells. New Sci 129:46–48

    CAS  Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    PubMed  PubMed Central  Google Scholar 

  • Pillai C, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    CAS  Google Scholar 

  • Pisciotta JM, Zou Y, Baskakov IV (2010) Light-dependent electrogenic activity of cyanobacteria. PLoS ONE 5:e10821

    PubMed  PubMed Central  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101

    CAS  PubMed  Google Scholar 

  • Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 64:585–610

    CAS  PubMed  Google Scholar 

  • Schmitz O, Katayama M, Williams SB, Kondo T, Golden SS (2000) CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science 289:765–768

    CAS  PubMed  Google Scholar 

  • Schnepf E, Schlegel I, Hepperle D (2002) Petalomonas sphagnophila (Euglenophyta) and its endocytobiotic cyanobacteria: a unique form of symbiosis. Phycologia 41:153–157

    Google Scholar 

  • Siavoshi F et al (2019) Sequestration inside the yeast vacuole may enhance Helicobacter pylori survival against stressful condition. Infect Genet Evol 69:127–133

    CAS  PubMed  Google Scholar 

  • Strong C, Bullard J, Burford M, McTainsh G (2013) Response of cyanobacterial soil crusts to moisture and nutrient availability. CATENA 109:195–202

    CAS  Google Scholar 

  • Tanaka H, Phaff HJ (1965) Enzymatic hydrolysis of yeast cell walls I. Isolation of wall-decomposing organisms and separation and purification of lytic enzymes. J Bacteriol 89:1570–1580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thacker R, Starnes S (2003) Host specificity of the symbiotic cyanobacterium Oscillatoria spongeliae in marine sponges, Dysidea spp. Mar Biol 142:643–648

    CAS  Google Scholar 

  • Tsujimoto R, Kamiya N, Fujita Y (2014) Transcriptional regulators ChlR and CnfR are essential for diazotrophic growth in nonheterocystous cyanobacteria. Proc Natl Acad Sci 111:6762–6767

    CAS  PubMed  Google Scholar 

  • Usher KM, Sutton DC, Toze S, Kuo J, Fromont J (2005) Inter-generational transmission of microbial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Mar Freshw Res 56:125–131

    Google Scholar 

  • Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852

    CAS  PubMed  Google Scholar 

  • Yoshida T, Sakamoto T (2009) Water-stress induced trehalose accumulation and control of trehalase in the cyanobacterium Nostoc punctiforme IAM M-15. J Gen Appl Microbiol 55:135–145

    CAS  PubMed  Google Scholar 

  • Yoshihara S, Suzuki F, Fujita H, Geng XX, Ikeuchi M (2000) Novel putative photoreceptor and regulatory genes required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 41:1299–1304

    CAS  PubMed  Google Scholar 

  • Zavrel M, Majer O, Kuchler K, Rupp S (2012) Transcription factor Efg1 shows a haploinsufficiency phenotype in modulating the cell wall architecture and immunogenicity of Candida albicans. Eukaryot Cell 11:129–140

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farideh Siavoshi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

203_2020_1835_MOESM1_ESM.mp4

Supplementary Video 1. Light microscopy of C. tropicalis. Video record shows fast-moving bacterium-like bodies inside the vacuole of yeast cells. Original magnification × 1250 (MP4 16878 kb)

203_2020_1835_MOESM2_ESM.avi

Supplementary Video 2. Live/Dead staining of C. tropicalis. Video record shows several live and actively moving bacterium-like bodies inside the yeast vacuole. Original magnification × 1000 (AVI 30237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, H., Siavoshi, F., Heydari, S. et al. Yeast engineered translucent cell wall to provide its endosymbiont cyanobacteria with light. Arch Microbiol 202, 1317–1325 (2020). https://doi.org/10.1007/s00203-020-01835-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01835-w

Keywords

Navigation