Skip to main content

Advertisement

Log in

Effect of the antidepressant maprotiline on calcium movement and the viability of renal tubular cells

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In Madin-Darby canine kidney (MDCK) cells, the effect of maprotiline, an antidepressant, on intracellular Ca2+ concentration ([Ca2+]i) was measured using fura-2. Maprotiline (>2.5 µM) caused a rapid rise of [Ca2+]i in a concentration-dependent manner (EC50 200 µM). Maprotiline-induced [Ca2+]i rise was reduced by removal of extracellular Ca2+ or by addition of La3+, but was not altered by voltage-gated Ca2+-channel blockers. Maprotiline-induced Mn2+ influx-associated fura-2 fluorescence quench directly suggests that maprotiline caused Ca2+ influx. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of maprotiline on [Ca2+]i was nearly abolished; also, pretreatment with maprotiline reduced a portion of thapsigargin-induced [Ca2+]i rise. U73122, an inhibitor of phospholipase C, abolished [Ca2+]i rise induced by ATP (but not by maprotiline). Overnight incubation with 1–10 µM maprotiline enhanced cell viability, but 20–50 µM maprotiline decreased it. These findings suggest that maprotiline rapidly increases [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and may modulate cell proliferation in a concentration-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2
Fig. 3
Fig. 4A,B
Fig. 5A,B
Fig. 6

Similar content being viewed by others

References

  • Arita M, Wada A, Takara H, Izumi F (1987) Inhibition of 22Na+ influx by tricyclic and tetracyclic antidepressants and binding of [3H]imipramine in bovine adrenal medullary cells. J Pharmacol Exp Ther 243:342–348

    CAS  PubMed  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315–325

    CAS  PubMed  Google Scholar 

  • Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Physiol 499:291–306

    CAS  PubMed  Google Scholar 

  • Bootman MD, Berridge MJ, Lipp P (1993) Cooking with calcium: the recipes for composing global signals from elementary events. Cell 91:367–373

    Google Scholar 

  • Brini M, Carafoli E (2000) Calcium signalling: a historical account, recent developments and future perspectives. Cell Mol Life Sci 57:354–370

    CAS  PubMed  Google Scholar 

  • Casis O, Gallego M, Sanchez-Chapula JA (2002) Imipramine, mianserine and maprotiline block delayed rectifier potassium current in ventricular myocytes. Pharmacol Res 45:141–146

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE (1995) Calcium signaling. Cell 80:259–268

    CAS  PubMed  Google Scholar 

  • Couture L, Elie R, Lavoie PA (2001) Effect of antidepressants on ATP-dependent calcium uptake by neuronal endoplasmic reticulum. Can J Physiol Pharmacol 79:946–952

    Article  CAS  PubMed  Google Scholar 

  • Eisen JN, Irwin J, Quay J, Livnat S (1989) The effect of antidepressants on immune function in mice. Biol Psychiatry 26:805–817

    Article  CAS  PubMed  Google Scholar 

  • Fowler CJ, Brannstrom G (1990) Reduction in beta-adrenoceptor density in cultured rat glioma C6 cells after incubation with antidepressants is dependent upon the culturing conditions used. J Neurochem 55:245–250

    CAS  PubMed  Google Scholar 

  • Gaertner HJ, Golfinopoulos G, Breyer-Pfaff U (1982) Response to maprotiline treatment in depressive patients relationship to urinary MHPG excretion and plasma drug level. Pharmacopsychiatria 15:170–174

    CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  Google Scholar 

  • Humble M (2000) Noradrenaline and serotonin reuptake inhibition as clinical principles: a review of antidepressant efficacy. Acta Psychiatr Scand Suppl 402:28–36

    CAS  PubMed  Google Scholar 

  • Igawa O, Kotake H, Kurata Y, Saitoh M, Fujimoto Y, Hasegawa J, Mashiba H (1988) Electrophysiological effects of maprotiline, a tetracyclic antidepressant agent, on isolated cardiac preparations. J Cardiovasc Pharmacol 11:167–173

    CAS  PubMed  Google Scholar 

  • Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K (1996) A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 19:1518–1520

    CAS  PubMed  Google Scholar 

  • Jan CR, Ho CM, Wu SN, Huang JK, Tseng CJ (1998a) Mechanism of lanthanum inhibition of extracellular ATP-evoked calcium mobilization in MDCK cells. Life Sci 62:533–540

    CAS  PubMed  Google Scholar 

  • Jan CR, Ho CM, Wu SN, Tseng CJ (1998b) Bradykinin-evoked Ca2+ mobilization in Madin Darby canine kidney cells. Eur J Pharmacol 355:219–233

    CAS  PubMed  Google Scholar 

  • Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    CAS  PubMed  Google Scholar 

  • Liu CP, Chiang HT, Jan CR (2002) Novel effect of carvedilol on Ca2+ movement in renal tubular cells. Biochem Pharmacol 64:1777–1784

    Article  CAS  PubMed  Google Scholar 

  • McFadzean I, Gibson A (2002) The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle. Br J Pharmacol 135:1–13

    CAS  PubMed  Google Scholar 

  • Merritt JE, Jacob R, Hallam TJ (1989) Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. J Biol Chem 264:1522–1527

    CAS  PubMed  Google Scholar 

  • Muraoka S, Kamei K, Muneoka K, Takigawa M (1998) Chronic imipramine administration amplifies the serotonin2A receptor-induced intracellular Ca2+ mobilization in C6 glioma cells through a calmodulin-dependent pathway. J Neurochem 71:1709–1718

    CAS  PubMed  Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    CAS  PubMed  Google Scholar 

  • Soler F, Plenge-Tellechea F, Fortea I, Fernandez-Belda F (2000) Clomipramine and related structures as inhibitors of the skeletal sarcoplasmic reticulum Ca2+ pump. J Bioenerg Biomembr 32:133–142

    Article  CAS  PubMed  Google Scholar 

  • Takebayashi M, Kagaya A, Inagaki M, Kozuru T, Jitsuiki H, Kurata K, Okamoto Y, Yamawaki S (2000) Effects of antidepressants on γ-aminobutyric acid- and N-methyl-d-aspartate-induced intracellular Ca2+ concentration increases in primary cultured rat cortical neurons. Neuropsychobiology 42:120–126

    Article  CAS  PubMed  Google Scholar 

  • Tang KY, Cheng JS, Lee KC, Chou KJ, Huang JK, Chen WC, Jan CR (2001) Fluoxetine-induced Ca2+ signals in Madin-Darby canine kidney cells. Naunyn Schmiedebergs Arch Pharmacol 363:16–20

    Article  CAS  PubMed  Google Scholar 

  • Thastrup O, Cullen PT, Drobak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 87:2466–2470

    CAS  Google Scholar 

  • Thompson AK, Mostafapour SP, Denlinger LC, Bleasdale JE, Fisher SK (1991) The aminosteroid U73122 inhibits muscarinic receptor sequestration and phosphoinositide hydrolysis in SK-N-SH neuroblastoma cells. J Biol Chem 266:23856–23862

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Veterans General Hospital Kaohsiung (VGHKS93-21) and grants NSC92-2320-B-075B-003 to C.-R. Jan, and VGHKS93-92 to S.-S. Hsu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Ren Jan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, SS., Chen, WC., Jiann, BP. et al. Effect of the antidepressant maprotiline on calcium movement and the viability of renal tubular cells. Arch Toxicol 78, 453–459 (2004). https://doi.org/10.1007/s00204-004-0564-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-004-0564-1

Keywords

Navigation