Skip to main content

Advertisement

Log in

Human CYP2E1 mediates the formation of glycidamide from acrylamide

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Regarding the cancer risk assessment of acrylamide (AA) it is of basic interest to know, as to what amount of the absorbed AA is metabolized to glycidamide (GA) in humans, compared to what has been observed in laboratory animals. GA is suspected of being the ultimate carcinogenic metabolite of AA. From experiments with CYP2E1-deficient mice it can be concluded that AA is metabolized to GA primarily by CYP2E1. We therefore examined whether CYP2E1 is involved in GA formation in non-rodent species with the focus on humans by using human CYP2E1 supersomes™, marmoset and human liver microsomes and in addition, genetically engineered V79 cells expressing human CYP2E1 (V79h2E1 cells). Special emphasis was placed on the analytical detection of GA, which was performed by gas chromatography/mass spectrometry. The results show that AA is metabolized to GA in human CYP2E1 supersomes™, in marmoset and human liver microsomes as well as in V79h2E1 cells. The activity of GA formation is highest in supersomes™; in human liver it is somewhat higher than in marmoset liver. A monoclonal CYP2E1 human selective antibody (MAB-2E1) and diethyldithiocarbamate (DDC) were used as specific inhibitors of CYP2E1. The generation of GA could be inhibited by MAB-2E1 to about 80% in V79h2E1 cells and to about 90% in human and marmoset liver microsomes. Also DDC led to an inhibition of about 95%. In conclusion, AA is metabolized to GA by human CYP2E1. Overall, the present work describes (1) the application and refinement of a sensitive methodology in order to determine low amounts of GA, (2) the applicability of genetically modified V79 cell lines in order to investigate specific questions concerning metabolism and (3) the involvement, for the first time, of human CYP2E1 in the formation of GA from AA. Further studies will compare the activities of GA formation in genetically engineered V79 cells expressing CYP2E1 from different species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adler ID, Baumgartner A, Gonda H, Friedman MA, Skerhut M (2000) 1-Aminobenzotriazole inhibits acrylamide-induced dominant lethal effects in spermatids of male mice. Mutagenesis 15(2):133–136

    Article  PubMed  CAS  Google Scholar 

  • Ali SF, Hong JS, Wilson WE, Uphouse LL, Bondy SC (1983) Effect of acrylamide on neurotransmitter metabolism and neuropeptide levels in several brain regions and upon circulating hormones. Arch Toxicol 52:35–43

    Article  PubMed  CAS  Google Scholar 

  • Amelizad S, Appel KE, Schoepke M, Rühl CS, Oesch F (1989) Enhanced demethylation and denitrosation of N-nitrosodimethylamine by human liver microsomes from alcoholics. Cancer Lett 46:43–49

    Article  PubMed  CAS  Google Scholar 

  • Barber DS, Hunt JR, Ehrich MF, Lehning EJ, LoPachin RM (2001) Metabolism, toxicokinetics and haemoglobin adduct formation in rats following subacute and subchronic acrylamide dosing. Neurotoxicology 22:341–353

    Article  PubMed  CAS  Google Scholar 

  • Bergmark E, Calleman CJ, He F, Costa LG (1993) Determination of hemoglobin adducts in humans occupationally exposed to acrylamide. Toxicol Appl Pharmacol 120:45–54

    Article  PubMed  CAS  Google Scholar 

  • Bernauer U, Vieth B, Ellrich R, Heinrich-Hirsch B, Jänig GR, Gundert-Remy U (1999) CYP2E1-dependent benzene toxicity: the role of extrahepatic benzene metabolism. Arch Toxicol 73:189–196

    Article  PubMed  CAS  Google Scholar 

  • Bernauer U, Vieth B, Ellrich R, Heinrich-Hirsch B, Jänig G-R, Gundert-Remy U (2000) CYP2E1 expression in the bone marrow and its intra-and interspecies variability. Approaches for a more reliable extrapolation from one species to another in the risk assessment of chemicals. Arch Toxicol 73:618–624

    Article  PubMed  CAS  Google Scholar 

  • Bernauer U, Ellrich R, Heinrich-Hirsch B, Teubner W, Vieth B, Gundert-Remy U (2002) expression of cytochrome P450 enzymes in human colon. IARC Sci Publ 156:487–489

    PubMed  CAS  Google Scholar 

  • Bernauer U, Garritsen H, Heinrich-Hirsch B, Gundert-Remy U (2003a) Immunochemical analysis of extrahepatic Cytochrome P-450 variability in human leucapherese samples and its consequences for the risk assessment process. Regul Toxicol Pharmacol 37:318–327

    Article  PubMed  CAS  Google Scholar 

  • Bernauer U, Glatt HR, Heinrich-Hirsch B, Liu Y, Muckel E, Vieth B, Gundert-Remy U (2003b) Heterologous expression of mouse cytochrome P450 2e1 in V79 cells: construction and characterization of the cell line and comparison with cell lines stably expressing rat P450 2E1 and human P450 2E1. Altern Lab Anim (ATLA) 31:21–30

    CAS  Google Scholar 

  • Bernauer U, Heinrich-Hirsch B, Tönnies M, Wolski PM, Gundert-Remy U (2006) Characterisation of the xenobiotic-metabolizing Cytochrome P450 expression pattern in human lung tissue by immunochemical and activity determination. Toxicol Lett 164:278–288

    Article  PubMed  CAS  Google Scholar 

  • Beseratinia A, Pfeifer GP (2003) Weak yet distinct mutagenicity of acrylamide in mammalian cells. J Natl Cancer Inst 95(12):889–896

    Article  Google Scholar 

  • Bjellaas T, Olstörn HB, Becher G, Alexander J, Knutsen SH, Paulsen JE (2007) Urinary metabolites as biomarkers of acrylamide exposure in mice following dietary crisp bread administration or subcutaneous injection. Toxicol Sci 100:374–380

    Article  PubMed  CAS  Google Scholar 

  • Bolt HM (2003) Genotoxicity—threshold or not? Introduction of cases of industrial chemicals. Toxicol Lett 140:43–51

    Article  PubMed  CAS  Google Scholar 

  • Bolt HM, Roos PH, Thier R (2003) The cytochrome P-450 isozyme CYP2E1 in the biological processing of industrial chemicals: consequences for occupational and environmental medicine. Int Arch Occup Environ Health 76:174–185

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Calleman C (1996) The metabolism and pharmacokinetics of acrylamide: implications for mechanisms of toxicity and human risk estimation. Drug Metab Rev 28:527–590

    Article  PubMed  CAS  Google Scholar 

  • Clement FC, Dip R, Naegeli H (2007) Expression profile of human cells in culture exposed to glycidamide, a reactive metabolite of the heat-induced food carcinogen acrylamide. Toxicology 240:111–124

    Article  PubMed  CAS  Google Scholar 

  • Court MH, Moltke LL von, Shader RI, Greenblatt DJ (1997) Biotransformation of Chlorzoxazone by hepatic microsomes from humans and ten other mammalian species. Biopharm Drug Dispos 18:213–226

    Article  PubMed  CAS  Google Scholar 

  • Czech E, Bernauer U, Palavinskas R, Klaffke HS, Gundert-Remy U, Appel KE (2007) Human CYP2E1 dependent formation of Glycidamide from Acrylamide. Naunyn-Scxhmiedeberg´s Archives of Pharmacology. 375 (abstract 353)

  • Doerge DR, Young JF, McDaniel LP, Twaddle NC, Churchwell MI (2005a) Toxicokinetics of acrylamide and glycidamide in Fisher 344 rats. Toxicol Appl Pharmacol 208:199–209

    Article  PubMed  CAS  Google Scholar 

  • Doerge DR, Young JF, McDaniel LP, Churchwell MI, Twaddle NC, Beland F (2005b) DNA adducts derived from administration of acrylamide and glycidamide to mice and rats. Mutat Res 580:131–141

    PubMed  CAS  Google Scholar 

  • EU (2002) http://ecb.jrc.it/DOCUMENTS/Existing-Chemicals/RISK_ASSESSMENT/REPORT/acrylamidereport011.pdf

  • FAO/WHO (2005) Joint FAO/WHO expert committee on food additives, 64th meeting, Rome, 8–17 February 2005. WHO technical report series

  • Fennell TR, and Friedmann MA (2005) Comparison of acrylamide metabolism in humans and rodents. In: Friedmann M, Mottram D (eds) Chemistry and safety of acrylamide in food, edited by advances in experimental medicine and biology, vol 561. Springer Science+Business Media, Inc., pp 109–116

  • Fennell TR, Sumner S, Snyder R, Burgess J, Spicer R, Bridson W, Friedman M (2005) Metabolism and hemoglobin adduct formation of acrylamide in humans. Toxicol Sci 85:447–459

    Article  PubMed  CAS  Google Scholar 

  • Fennell TR., Sumner SCJ, Snyder RW, Burgess J, Friedman MA (2006) Kinetics of elimination of urinary metabolites of acrylamide in humans. Toxicol Sci 93(2):256–267

    Article  PubMed  CAS  Google Scholar 

  • Fuhr U, Boettcher MI, Kinzig-Schippers M, Weyer A, Jetter A, Lazar A, Taubert D, Tomalik-Scharte D, Pournara P, Jakob V, Harlfinger S, Klaassen T, Berkessel A, Angerer J, Sörgel F, Schöming E (2006) Toxicokinetics of acrylamide in humans after ingestion of a defined dose in a test meal to improve risk assessment for acrylamide carcinogenicity. Cancer Epidemiol Biomarkers Prev 15(2):266–271

    Article  PubMed  CAS  Google Scholar 

  • Gamboa da Costa G, Churchwell MI, Hamilton LP, Von Tungeln LS, Beland FA, Marques MM, Doerge DR (2003) DNA adduct formation from acrylamide via conversion to glycidamide in adult and neonatal mice. Chem Res Toxicol 16(10):1328–1337

    Article  PubMed  CAS  Google Scholar 

  • Ghanayem BI, McDaniel LP, Churchwell MI, Twaddle NC, Snyder R, Fennell TR, Doerge DR (2005a) Role of CYP2E1 in the epoxidation of acrylamide to glycidamide and formation of DNA and hemoglobin adducts. Toxicol Sci 88(2):311–318

    Article  PubMed  CAS  Google Scholar 

  • Ghanayem BI, Witt KL, Kissling GE, Tice RR, Recio L (2005b) Absence of acrylamide-induced genotoxicity in CYP2E1-null mice: evidence consistent with a glycidamide-mediated effect. Mutat Res 578:284–297

    PubMed  CAS  Google Scholar 

  • Hogervorst JG, Schouten LJ, Konings EJ, Goldbohm RA, van den Brandt PA (2007) A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer. Cancer Epidemiol Biomarkers Prev 16:2304–23013

    Article  PubMed  CAS  Google Scholar 

  • IARC (1994) Acrylamide. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol 60. IARC, Lyon/France, pp 389–433

  • IPCS (2005) Harmonization project document no. 2, Chemical-specific adjustment factors for interspecies differences and human variability: guidance document for use of data in dose/concentration-response assessment. WHO, Geneva

    Google Scholar 

  • Kadry A, Friedman M, Abdel-Rahman M (1999) Pharmacokinetics of acrylamide after oral administration in male rats. Environ Toxicol Pharmacol 7:127–133

    Article  CAS  Google Scholar 

  • Kim RB, Yamazaki H, Chiba K et al (1996) In vivo and in vitro characterization of CYP2E1 activity in Japanese and Caucasians. J Pharmacol Exp Ther 279:4–11

    PubMed  CAS  Google Scholar 

  • Klaffke H, Fauhl C; Mathar W, Palavinskas R, Wittkowski R, Wenzl T, Anklam E (2005) Results from two interlaboratory comparison tests organized in Germany and at the EU level for analysis of acrylamide in food. J AOAC Int 88:292–298

    PubMed  CAS  Google Scholar 

  • Klaunig JE, Kamendulis LM (2005) Mechanisms of acrylamide induced rodent carcinogenesis. In: Frieman M, Mottram P (eds) Chemistry and safety of acrylamide in food. Springer Science+Business Media, Berkley, pp 49–62

    Chapter  Google Scholar 

  • Koyama N, Sakamoto H, Sakuraba M, Koizumi T, Takashima Y,Hayashi M, Matsufuji H, Yamagata K, Masuda S, Kinae N, Honma M (2006) Genotoxicity of acrylamide and glycidamide in human lymphoblastoid TK6 cells. Mutat Res 603:151–158

    PubMed  CAS  Google Scholar 

  • Lipscomb JC, Teuschler LK, Swartout J, Popken D, Cox T, Kedderis GL (2003) The impact of cytochrome P4502E1-dependent metabolic variance on a risk-relevant pharmacokinetic outcome in humans. Risk Anal 23:1221–1238

    Article  PubMed  Google Scholar 

  • Lipscomb JC (2004) Evaluating the relationship between variance in enzyme expression snd toxicant concentration in health risk assessment. Hum Ecol Risk Assess 10:39–55

    Article  CAS  Google Scholar 

  • LoPachin RM (2004) The changing view of acrylamide neurotoxicity. Neurotoxicology 25:617–630

    Article  PubMed  CAS  Google Scholar 

  • LoPachin RM, Barber DS, Geohagen BC, Gavin T, He D, Das S (2007) Structure-toxicity analysis of type-2 alkenes: in vitro neurotoxicity. Toxicol Sci 95:136–146

    Article  PubMed  CAS  Google Scholar 

  • Lucas D, Farez C, Bardou LG, Vaisse J, Attali JR, Valensi P (1998) Cytochrome P450 2E1 activity in diabetic and obese partiens as assessed by chlorzoxazone hydroxylation. Fundam Clin Pharmacol 12:553–558

    Article  PubMed  CAS  Google Scholar 

  • Manière I, Godard T, Doerge DR, Churchwell MI, Guffroy M, Laurentie M, Poul JM (2005) DNA damage and DNA adduct formation in rat tissues following oral administration of acrylamide. Mutat Res 580:119–129

    PubMed  Google Scholar 

  • Manjanatha MG, Aidoo A, Shelton SD, Bishop ME, McDaniel LP, Lyn-Cook LE, Doerge DR (2006) Genotoxicity of acrylamide and its metabolite glycidamide administered in drinking water to male and female Big Blue mice. Environ Mol Mutagen 47:6–17

    Article  PubMed  CAS  Google Scholar 

  • Pabst K, Mathar W, Palavinskas R, Meisel H, Blüthgen A, Klaffke H (2005) Acrylamide-occurrence in mixed concentrate feed for dairy cows and carry-over into milk. Food Addit Contam 22:210–213

    Article  PubMed  CAS  Google Scholar 

  • Park J, Kamendulis LM, Friedman MA, Klaunig JE (2002) Acrylamide-induced cellular transformation. Toxicol Sci 65:177–183

    Article  PubMed  CAS  Google Scholar 

  • Paulsson B, Rannug A, Henderson AP, Golding BT, Törnquist M, Warholm M (2005) In vitro studies of the influence of glutathione transferase and epoxide hydrolase on the detoxification of acrylamide and glycidamide in blood. Mutat Res 580:53–59

    PubMed  CAS  Google Scholar 

  • Peter R, Bocker R, Beaune PH, Iwasaki M, Guengerich FP, Yang CS (1990) Hydroxylation of chlorzoxazone as a specific probe for human liver cytochrome P-450IIE1. Chem Res Toxicol 3:566–573

    Article  PubMed  CAS  Google Scholar 

  • Puppel N, Tjaden Z, Fueller F, Marko D (2005) DNA strand breaking capacity of acrylamide and glycidamide in mammalian cells. Mutat Res 580:71–80

    PubMed  CAS  Google Scholar 

  • Ruden C (2004) Acrylamide and cancer risk—expert risk assessments and public debate. Food Chem Toxicol 42:335–349

    Article  PubMed  CAS  Google Scholar 

  • Schmalix WA, Barrenscheen M, Landsiedel R, Janzowski C, Eisenbrand G, Gonzalez F, Eliasson E, Ingelmann-Sundberg M, Perchermeier M, Greim H, Doehmer J (1995) Stable expression of human cytochrome P4502E1 in V79 Chinese hamster cells. Eur J Pharmocol 293:123–131

    Article  CAS  Google Scholar 

  • Segerbäck D, Calleman CJ, Schroeder JL, Costa LG, Faustman EM (1995) Formation of N-7-(2-carbamoyl-2-hydroxyethyl)guanine in DNA of the mouse and the rat following intraperitoneal administration of [14C]acrylamide. Carcinogenesis 16(5):1161–1165

    Article  PubMed  Google Scholar 

  • Siekevitz P (1962) Preparation of microsomes and submicrosomal fractions: mammalian. Methods Enzymol 5:61–68

    Article  CAS  Google Scholar 

  • Snawder JE, Limpscomb JC (2000) Interindividual variance of cytochrome P450 forms in human hepatic microsomes: correlation of individual forms witrh xenobiotic metabolism and implications in risk assessment. Regul Toxicol Pharmacol 32:200–209

    Article  PubMed  CAS  Google Scholar 

  • Sumner SCJ, MacNeela JP, Fenell TR (1992) Characterization and quantification of urinary metabolites of (1,2,3–13C)acrylamide in rats and mice using 13C nuclear magnetic resonance spectroscopy. Chem Res Toxicol 5:81–89

    Article  PubMed  CAS  Google Scholar 

  • Sumner SCJ, Fennell TR, Moore TA, Chanas B, Gonzales F, Ghanayem BI (1999) Role of cytochrome P450 2E1 in the metabolism of acrylamide and acrylonitrile in mice. Chem Res Toxicol 12:1110–1116

    Article  PubMed  CAS  Google Scholar 

  • Sumner SCJ, Williams CC, Snyder RW, Krol WL, Asgharian B, Fennell TR (2003) Acrylamide: a comparison of metabolism and haemoglobin adducts in rodents following dermal, intraperitonial, oral, or inhalation exposure. Toxicol Sci 75:260–270

    Article  PubMed  CAS  Google Scholar 

  • Tanaka E, Terada M, Misawa S (2000) Cytochrome P4502E1: its clinical and toxicological role. J Clin Pharm Ther 25:165–175

    Article  PubMed  CAS  Google Scholar 

  • Tareke E, Rydberg E, Karlsson P, Eriksson S, Tornqvist M (2000) Acrylamide: a cooking carcinogen? Chem Res Toxicol 13:517–522

    Article  PubMed  CAS  Google Scholar 

  • Twaddle NC, McDaniel LP, Gamboa da Costa G, Churchwell MI, Beland FA, Doerge DR (2004) Determination of acrylamide and glycidamide serum toxicokinetics in B6C3F1 mice using LC-ES/MS/MS. Cancer Lett 207:9–17

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. Ralf Stahlmann (FU Berlin) for providing livers from marmoset monkeys. The most excellent technical assistance of Mrs. Almstadt, Mrs. Henschke and Mrs. Storm is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus E. Appel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Settels, E., Bernauer, U., Palavinskas, R. et al. Human CYP2E1 mediates the formation of glycidamide from acrylamide. Arch Toxicol 82, 717–727 (2008). https://doi.org/10.1007/s00204-008-0296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-008-0296-8

Keywords

Navigation