Skip to main content

Advertisement

Log in

Global and MGMT promoter hypomethylation independently associated with genomic instability of lymphocytes in subjects exposed to high-dose polycyclic aromatic hydrocarbon

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Global hypomethylation, gene-specific methylation, and genome instability are common events in tumorigenesis. To date, few studies have examined the aberrant DNA methylation patterns in coke oven workers, who are highly at risk of lung cancer by occupational exposure to polycyclic aromatic hydrocarbons (PAHs). We recruited 82 PAH-exposed workers and 62 unexposed controls, assessed exposure levels by urinary 1-hydroxypyrene, and measured genetic damages by comet assay, bleomycin sensitivity, and micronucleus assay. The PAHs in coke oven emissions (COE) were estimated based on toxic equivalency factors. We used bisulfite-PCR pyrosequencing to quantitate DNA methylation in long interspersed nuclear element-1 (LINE-1) and O6-methylguanine-DNA methyltransferase (MGMT). Further, the methylation alteration was also investigated in COE-treated human bronchial epithelial (16HBE) cells. We found there are higher levels of PAHs in COE. Among PAH-exposed workers, LINE-1 and MGMT methylation levels (with CpG site specificity) were significantly lowered. LINE-1, MGMT, and its hot CpG site-specific methylation were negatively correlated with urinary 1-hydroxypyrene levels (r = −0.329, p < 0.001; r = −0.164, p = 0.049 and r = −0.176, p = 0.034, respectively). In addition, LINE-1 methylation was inversely associated with comet tail moment and micronucleus frequency, and a significant increase of micronucleus in low MGMT methylation group. In vitro study revealed that treatment of COE in 16HBE cells resulted in higher production of BPDE-DNA adducts, LINE-1 hypomethylation, hypomethylation, and suppression of MGMT expression. These findings suggest hypomethylation of LINE-1 and MGMT promoter could be used as markers for PAHs exposure and merit further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bollati V, Baccarelli A, Hou L et al (2007) Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 67(3):876–880. doi:10.1158/0008-5472.can-06-2995

    Article  PubMed  CAS  Google Scholar 

  • Bowman RV, Wright CM, Davidson MR, Francis SM, Yang IA, Fong KM (2009) Epigenomic targets for the treatment of respiratory disease. Expert Opin Ther Targets 13(6):625–640. doi:10.1517/14728220902926119

    Article  PubMed  CAS  Google Scholar 

  • Chanda S, Dasgupta UB, Guhamazumder D et al (2006) DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci 89(2):431–437. doi:10.1093/toxsci/kfj030

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Leng S, Li H et al (2009) Suboptimal DNA repair capacity predisposes coke-oven workers to accumulate more chromosomal damages in peripheral lymphocytes. Cancer Epidemiol Biomarkers Prev 18(3):987–993

    Article  PubMed  CAS  Google Scholar 

  • Costantino JP, Redmond CK, Bearden A (1995) Occupationally related cancer risk among coke oven workers: 30 years of follow-up. J Occup Environ Med 37(5):597–604

    Article  PubMed  CAS  Google Scholar 

  • Cozens AL, Yezzi MJ, Kunzelmann K et al (1994) CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 10(1):38–47

    Article  PubMed  CAS  Google Scholar 

  • Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482(7383):53–58. doi:10.1038/nature10802

    Article  PubMed  CAS  Google Scholar 

  • Daskalos A, Nikolaidis G, Xinarianos G et al (2009) Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 124(1):81–87. doi:10.1002/ijc.23849

    Article  PubMed  CAS  Google Scholar 

  • Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59(4):793–797

    PubMed  CAS  Google Scholar 

  • Fenech M (2006) Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res 600(1–2):58–66

    Article  PubMed  CAS  Google Scholar 

  • Furonaka O, Takeshima Y, Awaya H, Kushitani K, Kohno N, Inai K (2005) Aberrant methylation and loss of expression of O-methylguanine-DNA methyltransferase in pulmonary squamous cell carcinoma and adenocarcinoma. Pathol Int 55(6):303–309

    Article  PubMed  CAS  Google Scholar 

  • Hogan M, Dattagupta N, Crothers DM (1979) Transmission of allosteric effects in DNA. Nature 278(5704):521–524

    Article  PubMed  CAS  Google Scholar 

  • Hwang CS, Shemorry A, Varshavsky A (2009) Two proteolytic pathways regulate DNA repair by cotargeting the Mgt1 alkylguanine transferase. Proc Natl Acad Sci USA 106(7):2142–2147. doi:10.1073/pnas.0812316106

    Article  PubMed  CAS  Google Scholar 

  • IARC (1983) Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Polycyclic aromatic hydrocarbons. Part 1. Chemical, environmental and experimental data. France: IARC Vol. 32

  • Irahara N, Nosho K, Baba Y et al (2010) Precision of pyrosequencing assay to measure LINE-1 methylation in colon cancer, normal colonic mucosa, and peripheral blood cells. J Mol Diagn 12(2):177–183. doi:10.2353/jmoldx.2010.090106

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428

    PubMed  CAS  Google Scholar 

  • Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 6(8):1079–1099

    Article  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. doi:10.1038/35057062

    Article  PubMed  CAS  Google Scholar 

  • Leng S, Dai Y, Niu Y et al (2004) Effects of genetic polymorphisms of metabolic enzymes on cytokinesis-block micronucleus in peripheral blood lymphocyte among coke-oven workers. Cancer Epidemiol Biomarkers Prev 13(10):1631–1639

    PubMed  CAS  Google Scholar 

  • Moore LE, Pfeiffer RM, Poscablo C et al (2008) Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the spanish bladder cancer study: a case-control study. Lancet Oncol 9(4):359–366. doi:10.1016/s1470-2045(08)70038-x

    Article  PubMed  CAS  Google Scholar 

  • Nelson HH, Marsit CJ, Kelsey KT (2011) Global methylation in exposure biology and translational medical science. Environ Health Perspect 119(11):1528–1533. doi:10.1289/ehp.1103423

    Article  PubMed  CAS  Google Scholar 

  • Nisbet IC, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16(3):290–300

    Article  PubMed  CAS  Google Scholar 

  • Pang Y, Li W, Ma R et al (2008) Development of human cell models for assessing the carcinogenic potential of chemicals. Toxicol Appl Pharmacol 232(3):478–486

    Article  PubMed  CAS  Google Scholar 

  • Pavanello S, Bollati V, Pesatori AC et al (2009) Global and gene-specific promoter methylation changes are related to anti-B[a]PDE-DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals. Int J Cancer 125(7):1692–1697

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE, Byers TL (1992) Repair of DNA containing O6-alkylguanine. Faseb J 6(6):2302–2310

    PubMed  CAS  Google Scholar 

  • Pogribny IP, Tryndyak VP, Boureiko A et al (2008) Mechanisms of peroxisome proliferator-induced DNA hypomethylation in rat liver. Mutat Res 644(1–2):17–23. doi:10.1016/j.mrfmmm.2008.06.009

    Article  PubMed  CAS  Google Scholar 

  • Pulling LC, Divine KK, Klinge DM et al (2003) Promoter hypermethylation of the O6-methylguanine-DNA methyltransferase gene: more common in lung adenocarcinomas from never-smokers than smokers and associated with tumor progression. Cancer Res 63(16):4842–4848

    PubMed  CAS  Google Scholar 

  • Rodriguez J, Frigola J, Vendrell E et al (2006) Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res 66(17):8462–9468. doi:10.1158/0008-5472.can-06-0293

    Article  PubMed  CAS  Google Scholar 

  • Sadikovic B, Rodenhiser DI (2006) Benzopyrene exposure disrupts DNA methylation and growth dynamics in breast cancer cells. Toxicol Appl Pharmacol 216(3):458–468. doi:10.1016/j.taap.2006.06.012

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Kawakami K, Matsumoto I, Oda M, Watanabe G, Minamoto T (2010) Long interspersed nuclear element 1 hypomethylation is a marker of poor prognosis in stage IA non-small cell lung cancer. Clin Cancer Res 16(8):2418–2426. doi:10.1158/1078-0432.ccr-09-2819

    Article  PubMed  CAS  Google Scholar 

  • Schmezer P, Rajaee-Behbahani N, Risch A et al (2001) Rapid screening assay for mutagen sensitivity and DNA repair capacity in human peripheral blood lymphocytes. Mutagenesis 16(1):25–30

    Article  PubMed  CAS  Google Scholar 

  • Suter CM, Martin DI, Ward RL (2004) Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int J Colorectal Dis 19(2):95–101. doi:10.1007/s00384-003-0539-3

    Article  PubMed  Google Scholar 

  • Teneng I, Montoya-Durango DE, Quertermous JL, Lacy ME, Ramos KS (2011) Reactivation of L1 retrotransposon by benzo(a)pyrene involves complex genetic and epigenetic regulation. Epigenetics 6(3):355–367

    Article  PubMed  CAS  Google Scholar 

  • Weisenberger DJ, Romano LJ (1999) Cytosine methylation in a CpG sequence leads to enhanced reactivity with Benzo[a]pyrene diol epoxide that correlates with a conformational change. The Journal of biological chemistry 274(34):23948–23955

    Article  PubMed  CAS  Google Scholar 

  • Weisenberger DJ, Campan M, Long TI et al (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33(21):6823–6836. doi:10.1093/nar/gki987

    Article  PubMed  CAS  Google Scholar 

  • Wilson VL, Jones PA (1983) Inhibition of DNA methylation by chemical carcinogens in vitro. Cell 32(1):239–246

    Article  PubMed  CAS  Google Scholar 

  • Zhai Q, Duan H, Wang Y et al (2012) Genetic damage induced by organic extract of coke oven emissions on human bronchial epithelial cells. Toxicol in vitro : an international journal published in association with BIBRA 26(5):752–758. doi:10.1016/j.tiv.2012.04.001

    Article  CAS  Google Scholar 

  • Zhang FF, Cardarelli R, Carroll J et al (2011) Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics 6(3):293–299

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (NSFC 81172642, 81130050, 30700659, 81072284), a Key Program of Scientific Research of Public Welfare Project of the Ministry of Health of China (No.200902006), a Distinguished Young Scholar of NSFC (30925029), a National High-Tech Research and Development Program of China (2012AA062804), and partly financed by the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (KF2010-02).

Conflict of interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Zheng.

Additional information

Huawei Duan, Zhini He, and Junxiang Ma contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 194 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, H., He, Z., Ma, J. et al. Global and MGMT promoter hypomethylation independently associated with genomic instability of lymphocytes in subjects exposed to high-dose polycyclic aromatic hydrocarbon. Arch Toxicol 87, 2013–2022 (2013). https://doi.org/10.1007/s00204-013-1046-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1046-0

Keywords

Navigation