Skip to main content

Advertisement

Log in

Mechanistic relationships between hepatic genotoxicity and carcinogenicity in male B6C3F1 mice treated with polycyclic aromatic hydrocarbon mixtures

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The genotoxicity of a complex mixture [neutral fraction (NF)] from a wood preserving waste and reconstituted mixture (RM) mimicking the NF with seven major polycyclic aromatic hydrocarbons (PAHs) and benzo(a)pyrene (BaP) was investigated by determining DNA adducts and tumor incidence in male B6C3F1 mice exposed to three different doses of the chemical mixtures. The peak values of DNA adducts were observed after 24 h, and the highest levels of PAH–DNA adducts were exhibited in mice administered NF + BaP, and the highest tumor incidence and mortality were also observed in this group. DNA adduct levels after 1, 7, or 21 days were significantly correlated with animal mortality and incidence of total tumors including liver, lung, and forestomach. However, only hepatic DNA adducts after 7 days significantly correlated with liver tumor incidence. Most proteins involved in DNA repair including ATM, pATR, Chk1, pChk1, DNA PKcs, XRCC1, FANCD2, Ku80, Mre11, and Brca2 were significantly lower in liver tumor tissue compared to non-tumor tissue. Expressions of proteins involved in apoptosis and cell cycle regulation were also significantly different in tumor versus non-tumor tissues, and it is possible that PAH-induced changes in these gene products are important for tumor development and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agency EP (2003) US EPA integrated risk information system (IRIS). Environmental Protection Agency, Washington

    Google Scholar 

  • Agudo A, Peluso M, Munnia A et al (2012) Aromatic DNA adducts and risk of gastrointestinal cancers: a case-cohort study within the EPIC-Spain. Cancer Epidemiol Biomark Prev 21(4):685–692. doi:10.1158/1055-9965.EPI-11-1205

    Article  CAS  Google Scholar 

  • Byers LA, Wang J, Nilsson MB et al (2012) Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov 2(9):798–811. doi:10.1158/2159-8290.cd-12-0112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cizmas L, Barhoumi R, Burghardt RC et al (2003) A comparison of two methods for fractionating complex mixtures in preparation for toxicity analysis. J Toxicol Environ Health A 66(14):1351–1370. doi:10.1080/15287390306392

    Article  CAS  PubMed  Google Scholar 

  • Cui XS, Torndal UB, Eriksson LC, Moller L (1995) Early formation of DNA adducts compared with tumor formation in a long-term tumor study in rats after administration of 2-nitrofluorene. Carcinogenesis 16(9):2135–2141

    Article  CAS  PubMed  Google Scholar 

  • Culp SJ, Gaylor DW, Sheldon WG, Goldstein LS, Beland FA (1998) A comparison of the tumors induced by coal tar and benzo[a]pyrene in a 2-year bioassay. Carcinogenesis 19(1):117–124

    Article  CAS  PubMed  Google Scholar 

  • Du H, Sun J, Chen Z, Nie J, Tong J, Li J (2012) Cigarette smoke-induced failure of apoptosis resulting in enhanced neoplastic transformation in human bronchial epithelial cells. J Toxicol Environ Health A 75(12):707–720. doi:10.1080/15287394.2012.690088

    Article  CAS  PubMed  Google Scholar 

  • EPA (1996) Method 3650B, acid–base partition cleanup. http://www.epaorg/osw/hazard/testmethods/sw846/pdfs/3650bpdf

  • Farmer PB, Singh R (2008) Use of DNA adducts to identify human health risk from exposure to hazardous environmental pollutants: the increasing role of mass spectrometry in assessing biologically effective doses of genotoxic carcinogens. Mutat Res 659(1–2):68–76. doi:10.1016/j.mrrev.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Wu K, Huo X, Xu X (2011) Sources, distribution, and toxicity of polycyclic aromatic hydrocarbons. J Environ Health 73(9):22–25

    CAS  PubMed  Google Scholar 

  • Gupta RC (1984) Nonrandom binding of the carcinogen N-hydroxy-2-acetylaminofluorene to repetitive sequences of rat liver DNA in vivo. Proc Natl Acad Sci USA 81(22):6943–6947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta RC, Reddy MV, Randerath K (1982) 32P-postlabeling analysis of non-radioactive aromatic carcinogen–DNA adducts. Carcinogenesis 3(9):1081–1092

    Article  CAS  PubMed  Google Scholar 

  • Hamouchene H, Arlt VM, Giddings I, Phillips DH (2011) Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene. BMC Genomics 12:333. doi:10.1186/1471-2164-12-333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He Y, Zhou Z, Hofstetter WL et al (2012) Aberrant expression of proteins involved in signal transduction and DNA repair pathways in lung cancer and their association with clinical parameters. PLoS One 7(2):e31087. doi:10.1371/journal.pone.0031087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hecht SS (2003) Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 3(10):733–744

    Article  CAS  PubMed  Google Scholar 

  • Hecht SS (2012) Lung carcinogenesis by tobacco smoke. Int J Cancer 131(12):2724–2732. doi:10.1002/ijc.27816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henkler F, Stolpmann K, Luch A (2012) Exposure to polycyclic aromatic hydrocarbons: bulky DNA adducts and cellular responses. EXS 101:107–131. doi:10.1007/978-3-7643-8340-4_5

    PubMed  Google Scholar 

  • Hu W, Feng Z, Tang MS (2004) Chromium(VI) enhances (+/−)-anti-7beta,8alpha-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene-induced cytotoxicity and mutagenicity in mammalian cells through its inhibitory effect on nucleotide excision repair. Biochemistry 43(44):14282–14289. doi:10.1021/bi048560o

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey AM, Weinstein IB, Jennette KW et al (1977) Structures of benzo(a)pyrene—nucleic acid adducts formed in human and bovine bronchial explants. Nature 269(5626):348–350

    Article  CAS  PubMed  Google Scholar 

  • John K, Pratt MM, Beland FA et al (2012) Benzo[a]pyrene (BP) DNA adduct formation in DNA repair-deficient p53 haploinsufficient [Xpa(−/−)p53(+/−)] and wild-type mice fed BP and BP plus chlorophyllin for 28 days. Carcinogenesis 33(11):2236–2241. doi:10.1093/carcin/bgs247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klaene JJ, Sharma VK, Glick J, Vouros P (2012) The analysis of DNA adducts: the transition from (32)P-postlabeling to mass spectrometry. Cancer Lett. doi:10.1016/j.canlet.2012.08.007

    PubMed Central  PubMed  Google Scholar 

  • Kyrtopoulos SA (2006) Biomarkers in environmental carcinogenesis research: striving for a new momentum. Toxicol Lett 162(1):3–15. doi:10.1016/j.toxlet.2005.10.010

    Article  CAS  PubMed  Google Scholar 

  • Mabon N, Moorthy B, Randerath E, Randerath K (1996) Monophosphate 32P-postlabeling assay of DNA adducts from 1,2:3,4-diepoxybutane, the most genotoxic metabolite of 1,3-butadiene: in vitro methodological studies and in vivo dosimetry. Mutat Res 371(1–2):87–104

    Article  CAS  PubMed  Google Scholar 

  • Malinowsky K, Wolff C, Schott C, Becker KF (2013) Characterization of signalling pathways by reverse phase protein arrays. Methods Mol Biol 1049:285–299. doi:10.1007/978-1-62703-547-7_21

    Article  CAS  PubMed  Google Scholar 

  • Phillips TD (2006) The relationships between levels of DNA adducts and tumor incidence in different tissues of B6C3F1 male mice treated with benzo(a)pyrene and a reconstituted PAH mixture. PhD Thesis, Genotoxicity of Complex Chemical Mixtures, A&M University, Texas

  • Phillips DH, Arlt VM (2007) The 32P-postlabeling assay for DNA adducts. Nat Protoc 2(11):2772–2781. doi:10.1038/nprot.2007.394

    Article  CAS  PubMed  Google Scholar 

  • Phillips DH, Venitt S (2012) DNA and protein adducts in human tissues resulting from exposure to tobacco smoke. Int J Cancer. doi:10.1002/ijc.27827

    PubMed Central  Google Scholar 

  • Poirier MC (1997) DNA adducts as exposure biomarkers and indicators of cancer risk. Environ Health Perspect 105(Suppl 4):907–912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Randerath K, Reddy MV, Gupta RC (1981) 32P-labeling test for DNA damage. Proc Natl Acad Sci USA 78(10):6126–6129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Randerath K, Sriram P, Moorthy B et al (1998) Comparison of immunoaffinity chromatography enrichment and nuclease P1 procedures for 32P-postlabelling analysis of PAH-DNA adducts. Chem Biol Interact 110(1–2):85–102

    Article  CAS  PubMed  Google Scholar 

  • Randerath K, Randerath E, Zhou GD et al (1999) Genotoxicity of complex PAH mixtures recovered from contaminated lake sediments as assessed by three different methods. Environ Mol Mutagen 33(4):303–312. doi:10.1002/(SICI)1098-2280(1999)33:4<303:AID-EM7>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  • Reddy MV, Randerath K (1986) Nuclease P1-mediated enhancement of sensitivity of 32P-postlabeling test for structurally diverse DNA adducts. Carcinogenesis 7(9):1543–1551

    Article  CAS  PubMed  Google Scholar 

  • Saieva C, Peluso M, Masala G et al (2011) Bulky DNA adducts and breast cancer risk in the prospective EPIC-Italy study. Breast Cancer Res Treat 129(2):477–484. doi:10.1007/s10549-011-1472-8

    Article  PubMed  Google Scholar 

  • Shi Q, Wang LE, Bondy ML, Brewster A, Singletary SE, Wei Q (2004) Reduced DNA repair of benzo[a]pyrene diol epoxide-induced adducts and common XPD polymorphisms in breast cancer patients. Carcinogenesis 25(9):1695–1700. doi:10.1093/carcin/bgh167

    Article  CAS  PubMed  Google Scholar 

  • Shorey LE, Castro DJ, Baird WM et al (2012) Transplacental carcinogenesis with dibenzo[def, p]chrysene (DBC): timing of maternal exposures determines target tissue response in offspring. Cancer Lett 317(1):49–55. doi:10.1016/j.canlet.2011.11.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siddens LK, Larkin A, Krueger SK et al (2012) Polycyclic aromatic hydrocarbons as skin carcinogens: comparison of benzo[a]pyrene, dibenzo[def, p]chrysene and three environmental mixtures in the FVB/N mouse. Toxicol Appl Pharmacol 264(3):377–386. doi:10.1016/j.taap.2012.08.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29. doi:10.3322/caac.21208

    Article  PubMed  Google Scholar 

  • Stare SM, Jozefowicz JJ (2008) The effects of environmental factors on cancer prevalence rates and specific cancer mortality rates in a sample of OECD developed countries. Int J Appl Econ 5(2):24

    Google Scholar 

  • Sugasawa K (2011) Multiple DNA damage recognition factors involved in mammalian nucleotide excision repair. Biochemistry (Mosc) 76(1):16–23

    Article  CAS  Google Scholar 

  • Suzuki Y, Umemura T, Ishii Y et al (2012) Possible involvement of sulfotransferase 1A1 in estragole-induced DNA modification and carcinogenesis in the livers of female mice. Mutat Res 749(1–2):23–28. doi:10.1016/j.mrgentox.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Phillips DH, Stampfer M et al (2001) Association between carcinogen–DNA adducts in white blood cells and lung cancer risk in the physicians health study. Cancer Res 61(18):6708–6712

    CAS  PubMed  Google Scholar 

  • Tarantini A, Maitre A, Lefebvre E, Marques M, Rajhi A, Douki T (2011) Polycyclic aromatic hydrocarbons in binary mixtures modulate the efficiency of benzo[a]pyrene to form DNA adducts in human cells. Toxicology 279(1–3):36–44. doi:10.1016/j.tox.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  • Tibes R, Qiu Y, Lu Y et al (2006) Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 5(10):2512–2521. doi:10.1158/1535-7163.MCT-06-0334

    Article  CAS  PubMed  Google Scholar 

  • Urban AM, Upadhyaya P, Cao Q, Peterson LA (2012) Formation and repair of pyridyloxobutyl DNA adducts and their relationship to tumor yield in A/J mice. Chem Res Toxicol 25(10):2167–2178. doi:10.1021/tx300245w

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Veglia F, Loft S, Matullo G et al (2008) DNA adducts and cancer risk in prospective studies: a pooled analysis and a meta-analysis. Carcinogenesis 29(5):932–936. doi:10.1093/carcin/bgm286

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799. doi:10.1038/nm1087

    Article  CAS  PubMed  Google Scholar 

  • Warshawsky D, Talaska G, Xue W, Schneider J (1996) Comparative carcinogenicity, metabolism, mutagenicity, and DNA binding of 7H-dibenzo[c, g]carbazole and dibenz[a, j]acridine. Crit Rev Toxicol 26(2):213–249. doi:10.3109/10408449609017932

    Article  CAS  PubMed  Google Scholar 

  • Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LA (2004) Environmental and chemical carcinogenesis. Semin Cancer Biol 14(6):473–486

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (2009) Biostatistical analysis, 5th edn. Prentice-Hall, New Jersey

    Google Scholar 

  • Zhou GD, Hernandez NS, Randerath E, Randerath K (1999) Acute elevation by short-term dietary restriction or food deprivation of type I I-compound levels in rat liver DNA. Nutr Cancer 35(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Zhou GD, Randerath K, Donnelly KC, Jaiswal AK (2004) Effects of NQO1 deficiency on levels of cyclopurines and other oxidative DNA lesions in liver and kidney of young mice. Int J Cancer 112(5):877–883

    Article  CAS  PubMed  Google Scholar 

  • Zhou GD, Popovic N, Lupton JR, Turner ND, Chapkin RS, Donnelly KC (2005) Tissue-specific attenuation of endogenous DNA I-compounds in rats by carcinogen azoxymethane: possible role of dietary fish oil in colon cancer prevention. Cancer Epidemiol Biomark Prev 14(5):1230–1235

    Article  CAS  Google Scholar 

  • Zhou GD, Richardson M, Fazili IS et al (2010) Role of retinoic acid in the modulation of benzo(a)pyrene-DNA adducts in human hepatoma cells: implications for cancer prevention. Toxicol Appl Pharmacol 249(3):224–230. doi:10.1016/j.taap.2010.09.019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Annika Gillespie and Rebecca Lingenfelter for their efforts during animal experiments. This research work was supported by National Institute of Health grants P30-ES09106, P42-ES04917, ES-09132, and ES-019689, HL-087174, HL-112516 (to BM), and the Center for Translational Environmental Health Research (CTEHR), P30ES023512.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Dong Zhou.

Additional information

Kirby C. Donnelly: deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phillips, T.D., Richardson, M., Cheng, YS.L. et al. Mechanistic relationships between hepatic genotoxicity and carcinogenicity in male B6C3F1 mice treated with polycyclic aromatic hydrocarbon mixtures. Arch Toxicol 89, 967–977 (2015). https://doi.org/10.1007/s00204-014-1285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1285-8

Keywords

Navigation