Skip to main content
Log in

Intestinal toxicity of the masked mycotoxin deoxynivalenol-3-β-d-glucoside

  • Biologics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Natural food contaminants such as mycotoxins are an important problem for human health. Deoxynivalenol (DON) is one of the most common mycotoxins detected in cereals and grains. Its toxicological effects mainly concern the immune system and the gastrointestinal tract. This toxin is a potent ribotoxic stressor leading to MAP kinase activation and inflammatory response. DON frequently co-occurs with its glucosylated form, the masked mycotoxin deoxynivalenol-3-β-d-glucoside (D3G). The toxicity of this later compound remains unknown in mammals. This study aimed to assess the ability of D3G to elicit a ribotoxic stress and to induce intestinal toxicity. The toxicity of D3G and DON (0–10 µM) was studied in vitro, on the human intestinal Caco-2 cell line, and ex vivo, on porcine jejunal explants. First, an in silico analysis revealed that D3G, contrary to DON, was unable to bind to the A-site of the ribosome peptidyl transferase center, the main targets for DON toxicity. Accordingly, D3G did not activate JNK and P38 MAPKs in treated Caco-2 cells and did not alter viability and barrier function on cells, as measured by the trans-epithelial electrical resistance. Treatment of intestinal explants for 4 h with 10 µM DON induced morphological lesions and up-regulated the expression of pro-inflammatory cytokines as measured by qPCR and pan-genomic microarray analysis. By contrast, expression profile of D3G-treated explants was similar to that of controls, and these explants did not show histomorphology alteration. In conclusion, our data demonstrated that glucosylation of DON suppresses its ability to bind to the ribosome and decreases its intestinal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alassane-Kpembi I, Kolf-Clauw M, Gauthier T, Abrami R, Abiola FA, Oswald IP, Puel O (2013) New insights into mycotoxin mixtures: the toxicity of low doses of type B trichothecenes on intestinal epithelial cells is synergistic. Toxicol Appl Pharmacol 272:191–198. doi:10.1016/j.taap.2013.05.023

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh A, Braber S, Akbari P, Garssen J, Fink-Gremmels J (2015) Deoxynivalenol impairs weight gain and affects markers of gut health after low-dose. Short Term Expos Grow Pigs Toxins (Basel) 7:2071–2095. doi:10.3390/toxins7062071

    Article  CAS  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516. doi:10.1128/CMR.16.3.497-516.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthiller F, Dall’Asta C, Schuhmacher R, Lemmens M, Adam G, Krska R (2005) Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J Agric Food Chem 53:3421–3425. doi:10.1021/jf047798g

    Article  CAS  PubMed  Google Scholar 

  • Berthiller F, Dall’Asta C, Corradini R, Marchelli R, Sulyok M, Krska R, Adam G, Schuhmacher R (2009) Occurrence of deoxynivalenol and its 3-beta-d-glucoside in wheat and maize. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 26:507–511. doi:10.1080/02652030802555668

    Article  CAS  PubMed  Google Scholar 

  • Berthiller F, Krska R, Domig KJ, Kneifel W, Juge N, Schuhmacher R, Adam G (2011) Hydrolytic fate of deoxynivalenol-3-glucoside during digestion. Toxicol Lett 206:264–267. doi:10.1016/j.toxlet.2011.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthiller F, Crews C, Dall’Asta C, Saeger SD, Haesaert G, Karlovsky P, Oswald IP, Seefelder W et al (2013) Masked mycotoxins: a review. Mol Nutr Food Res 57:165–186. doi:10.1002/mnfr.201100764

    Article  CAS  PubMed  Google Scholar 

  • Bony S, Carcelen M, Olivier L, Devaux A (2006) Genotoxicity assessment of deoxynivalenol in the Caco-2 cell line model using the Comet assay. Toxicol Lett 166(1):67–76. doi:10.1016/j.toxlet.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  • Bracarense AP, Lucioli J, Grenier B, Drociunas Pacheco G, Moll WD, Schatzmayr G, Oswald IP (2012) Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. Br J Nutr 107:1776–1786. doi:10.1017/S0007114511004946

    Article  CAS  PubMed  Google Scholar 

  • Cano PM, Seeboth J, Meurens F, Cognie J, Abrami R, Oswald IP, Guzylack-Piriou L (2013) Deoxynivalenol as a new factor in the persistence of intestinal inflammatory diseases: an emerging hypothesis through possible modulation of Th17-mediated response. PLoS One 8:e53647. doi:10.1371/journal.pone.0053647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dall’Erta A, Cirlini M, Dall’Asta M, Del Rio D, Galaverna G, Dall’Asta C (2013) Masked mycotoxins are efficiently hydrolyzed by human colonic microbiota releasing their aglycones. Chem Res Toxicol 26:305–312. doi:10.1021/tx300438c

    Article  PubMed  Google Scholar 

  • De Boevre M, Di Mavungu JD, Maene P, Audenaert K, Deforce D, Haesaert G, Esckhout M, Callebaut A et al (2012) Development and validation of an LC-MS/MS method for the simultaneous determination of deoxynivalenol, zearalenone, T-2-toxin and some masked metabolites in different cereals and cereal-derived food. Food Addit Contam Part A 29:819–835. doi:10.1080/19440049.2012.656707

    Article  Google Scholar 

  • De Nijs M, Van den Top HJ, Portier L, Oegema G, Kramer E, Van Egmond HP, Hoogenboom RLAP (2012) Digestibility and absorption of deoxynivalenol-3-β-glucoside in in vitro models. World Mycotoxin J 5:319–324. doi:10.1080/19440049.2013.820846

    Article  Google Scholar 

  • EFSA (2013) Deoxynivalenol in food and feed: occurrence and exposure. EFSA J 11:3379. doi:10.2903/j.efsa.2013.3379

    Article  Google Scholar 

  • Garreau de Loubresse N, Prokhorova I, Holtkamp W, Rodnina MV, Yusupova G, Yusupov M (2014) Structural basis for the inhibition of the eukaryotic ribosome. Nature 513:517–522. doi:10.1038/nature13737

    Article  CAS  PubMed  Google Scholar 

  • Ghareeb K, Awad WA, Bohm J, Zebeli Q (2015) Impacts of the feed contaminant deoxynivalenol on the intestine of monogastric animals: poultry and swine. J Appl Toxicol 35:327–337. doi:10.1002/jat.3083

    Article  CAS  PubMed  Google Scholar 

  • Gourbeyre P, Berri M, Lippi Y, Meurens F, Vincent-Naulleau S, Laffitte J, Rogel-Gaillard C, Pinton P et al (2015) Pattern recognition receptors in the gut: analysis of their expression along the intestinal tract and the crypt/villus axis. Physiol Rep 3:e12225. doi:10.14814/phy2.12225

    Article  PubMed  PubMed Central  Google Scholar 

  • Gratz SW, Duncan G, Richardson AJ (2013) The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3-glucoside and may be responsible for urinary deepoxy-deoxynivalenol. Appl Environ Microbiol 79:1821–1825. doi:10.1128/AEM.02987-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halloy DJ, Gustin PG, Bouhet S, Oswald IP (2005) Oral exposure to culture material extract containing fumonisins predisposes swine to the development of pneumonitis caused by Pasteurella multocida. Toxicology 213:34–44. doi:10.1151/vetres:2004012

    Article  CAS  PubMed  Google Scholar 

  • Helke KL, Swindle MM (2013) Animal models of toxicology testing: the role of pigs. Expert Opin Drug Metab Toxicol 9:127–139. doi:10.1517/17425255.2013.739607

    Article  CAS  PubMed  Google Scholar 

  • JECFA (2011) Evaluation of certain contaminants in food: seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series, no 959

  • Joshi S, Platanias LC (2012) Mnk kinases in cytokine signaling and regulation of cytokine responses. Biomol Concepts 3:127–139. doi:10.1515/bmc-2011-0057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katika MR, Hendriksen PJ, Shao J, van Loveren H, Peijnenburg A (2012) Transcriptome analysis of the human T lymphocyte cell line Jurkat and human peripheral blood mononuclear cells exposed to deoxynivalenol (DON): new mechanistic insights. Toxicol Appl Pharmacol 264:51–64. doi:10.1016/j.taap.2012.07.017

    Article  CAS  PubMed  Google Scholar 

  • Kolf-Clauw M, Castellote J, Joly B, Bourges-Abella N, Raymond-Letron I, Pinton P, Oswald IP (2009) Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: histopathological analysis. Toxicol In Vitro 23:1580–1584. doi:10.1016/j.tiv.2009.07.015

    Article  CAS  PubMed  Google Scholar 

  • Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schumacher R, Adam G, Buerstmayr H et al (2005) The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant Microbe Interact 18:1318–1324. doi:10.1094/MPMI-18-1318

    Article  CAS  PubMed  Google Scholar 

  • Malachova A, Dzuman Z, Veprikova Z, Vaclavikova M, Zachariasova M, Hajslova J (2011) Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: the major mycotoxins found in cereal-based products on the Czech market. J Agric Food Chem 59:12990–12997. doi:10.1021/jf203391x

    Article  CAS  PubMed  Google Scholar 

  • Maresca M (2013) From the gut to the brain: journey and pathophysiological effects of the food-associated mycotoxin deoxynivalenol. Toxins 5:784–820. doi:10.3390/toxins5040784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meissonnier GM, Laffitte J, Raymond I, Benoit E, Cossalter AM, Pinton P, Bertin G, Oswald IP, Galtier P (2008) Subclinical doses of T-2 toxin impair acquired immune response and liver cytochrome P450 in pigs. Toxicology 247:46–54. doi:10.1016/j.tox.2008.02.003

    Article  CAS  PubMed  Google Scholar 

  • Nagl V, Schwartz H, Krska R, Moll WD, Knasmüller S, Ritzmann M, Adam G, Berthiller F (2012) Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in rats. Toxicol Lett 213:367–373. doi:10.1016/j.toxlet.2012.07.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagl V, Woechtl B, Schwartz-Zimmermann HE, Hennig-Pauka I, Moll WD, Adam G, Berthiller F (2014) Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs. Toxicol Lett 229:190–197. doi:10.1016/j.toxlet.2014.06.032

    Article  CAS  PubMed  Google Scholar 

  • Osselaere A, Santos R, Hautekiet V, De Backer P, Chiers K, Ducatelle R, Croubels S (2013) Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine. PLoS One 8:e69014. doi:10.1371/journal.pone.0069014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pestka JJ (2010) Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 84:663–679. doi:10.1007/s00204-010-0579-8

    Article  CAS  PubMed  Google Scholar 

  • Pestka JJ, Smolinski AT (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health B Crit Rev 8:39–69. doi:10.1080/10937400590889458

    Article  CAS  PubMed  Google Scholar 

  • Pinton P, Oswald IP (2014) Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review. Toxins (Basel) 6:1615–1643. doi:10.3390/toxins6051615

    Article  CAS  Google Scholar 

  • Pinton P, Tsybulskyy D, Lucioli J, Laffitte J, Callu P, Lyazhri F, Grosjean F, Bracarense AP et al (2012) Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicol Sci 130:180–190. doi:10.1093/toxsci/kfs239

    Article  CAS  PubMed  Google Scholar 

  • Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, krska R, Kuchler K, Glossl J et al (2003) Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem 278:47905–47914. doi:10.1074/jbc.M307552200

    Article  CAS  PubMed  Google Scholar 

  • Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 22:369–378. doi:10.1080/02652030500058403

    Article  CAS  PubMed  Google Scholar 

  • Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F (2005) The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol 21:1–26. doi:10.1007/s10565-005-0085-6

    Article  CAS  PubMed  Google Scholar 

  • Sergent T, Parys M, Garsou S, Pussemier L, Schneider YJ, Larondelle Y (2006) Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations. Toxicol Lett 164:167–176. doi:10.1016/j.toxlet.2005.12.006

    Article  CAS  PubMed  Google Scholar 

  • Streit E, Naehrer K, Rodrigues I, Schatzmayr G (2013) Mycotoxin occurrence in feed and feed raw materials worldwide: long-term analysis with special focus on Europe and Asia. J Sci Food Agric 93:2892–2899. doi:10.1002/jsfa.6225

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Iwahashi Y (2015) Low toxicity of deoxynivalenol-3-glucoside in microbial cells. Toxins (Basel) 7:187–200. doi:10.3390/toxins7010187

    Article  Google Scholar 

  • Van De Walle J, During A, Piront N, Toussaint O, Schneider YJ, Larondelle Y (2010) Physio-pathological parameters affect the activation of inflammatory pathways by deoxynivalenol in Caco-2 cells. Toxicol In Vitro 24:1890–1898. doi:10.1016/j.tiv.2010.07.008

    Article  Google Scholar 

  • van Kol SW, Hendriksen PJ, van Loveren H, Peijnenburg A (2011) The effects of deoxynivalenol on gene expression in the murine thymus. Toxicol Appl Pharmacol 250:299–311. doi:10.1016/j.taap.2010.11.001

    Article  PubMed  Google Scholar 

  • Vandenbroucke V, Croubels S, Martel A, Verbrugghe E, Goossens J, Van Deun K, Boyen F, Thompson A et al (2011) The mycotoxin deoxynivalenol potentiates intestinal inflammation by Salmonella typhimurium in porcine ileal loops. PLoS One 6:e23871. doi:10.1371/journal.pone.0023871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Videmann B, Tep J, Cavret S, Lecoeur S (2007) Epithelial transport of deoxynivalenol: involvement of human P-glycoprotein (ABCB1) and multidrug resistance-associated protein 2 (ABCC2). Food Chem Toxicol 45:1938–1947. doi:10.1016/j.fct.2007.04.011

    Article  CAS  PubMed  Google Scholar 

  • Voillet V, San Cristobal M, Lippi Y, Martin PG, Lannuccelli N, Lascor C, Vignoles F, Billon Y et al (2014) Muscle transcriptomic investigation of late fetal development identifies candidate genes for piglet maturity. BMC Genom 15:797. doi:10.1186/1471-2164-15-797

    Article  Google Scholar 

  • Warth B, Sulyok M, Berthiller F, Schuhmacher R, Krska R (2013) New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone. Toxicol Lett 220:88–94. doi:10.1016/j.toxlet.2013.04.012

    Article  CAS  PubMed  Google Scholar 

  • Wu W, He K, Zhou H-R, Berthiller F, Adam G, Sugita-Konishi Y, Watanabe M, Krantis A et al (2014a) Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol congeners on proinflammatory cytokine and chemokine mRNA expression in the mouse. Toxicol Appl Pharmacol 278:107–115. doi:10.1016/j.taap.2014.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Zhou H-R, Bursian SJ, Pan X, Link JE, Berthiller F, Adam G, Krantis A et al (2014b) Comparison of anorectic and emetic potencies of deoxynivalenol (Vomitoxin) to the plant metabolite deoxynivalenol-3-glucoside and synthetic deoxynivalenol derivatives EN139528 and EN139544. Toxicol Sci 142:167–181. doi:10.1093/toxsci/kfu166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou HR, Pestka JJ (2015) Deoxynivalenol (Vomitoxin)-induced cholecystokinin and glucagon-like peptide-1 release in the STC-1 enteroendocrine cell model is mediated by calcium-sensing receptor and transient receptor potential ankyrin-1 channel. Toxicol Sci 145:407–417. doi:10.1093/toxsci/kfv061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank A.M. Cossalter, J. Laffitte and P. Pinton, INRA Toxalim, for sample collection and western experiments. Thanks are also due to R. Hines, BIOMIN, for language editing, and to P. Pinton and I. Alassane-Kpembi for critical reading of the manuscript. A. Pierron and L.S. Murate were supported by fellowship from CIFRE (2012/0572, jointly financed by the BIOMIN Holding GmbH, Association Nationale de la Recherche Technique and INRA) and CAPES (Brazil), respectively. The Austrian Federal Ministry of Science, Research and Economy, the Austria National Foundation for Research, Technology and Development and BIOMIN Holding GmbH are acknowledged for funding the Christian Doppler Laboratory for Mycotoxin Metabolism. The enzymatic production of D3G was performed within the Vienna Science and Technology Fund project WWTF LS12-012 by Dr. Herbert Michlmayr and Prof. Gerhard Adam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle P. Oswald.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest during the realization of the experimental work submitted.

Additional information

Alix Pierron and Sabria Mimoun have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierron, A., Mimoun, S., Murate, L.S. et al. Intestinal toxicity of the masked mycotoxin deoxynivalenol-3-β-d-glucoside. Arch Toxicol 90, 2037–2046 (2016). https://doi.org/10.1007/s00204-015-1592-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1592-8

Keywords

Navigation