Skip to main content

Advertisement

Log in

An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

T-2 toxin is the most toxic trichothecene mycotoxin, and it exerts potent toxic effects, including immunotoxicity, neurotoxicity, and reproductive toxicity. Recently, several novel metabolites, including 3′,4′-dihydroxy-T-2 toxin and 4′,4′-dihydroxy-T-2 toxin, have been uncovered. The enzymes CYP3A4 and carboxylesterase contribute to T-2 toxin metabolism, with 3′-hydroxy-T-2 toxin and HT-2 toxin as the corresponding primary products. Modified forms of T-2 toxin, including T-2–3-glucoside, exert their immunotoxic effects by signaling through JAK/STAT but not MAPK. T-2–3-glucoside results from hydrolyzation of the corresponding parent mycotoxin and other metabolites by the intestinal microbiota, which leads to enhanced toxicity. Increasing evidence has shown that autophagy, hypoxia-inducible factors, and exosomes are involved in T-2 toxin-induced immunotoxicity. Autophagy promotes the immunosuppression induced by T-2 toxin, and a complex crosstalk between apoptosis and autophagy exists. Very recently, “immune evasion” activity was reported to be associated with this toxin; this activity is initiated inside cells and allows pathogens to escape the host immune response. Moreover, T-2 toxin has the potential to trigger hypoxia in cells, which is related to activation of hypoxia-inducible factor and the release of exosomes, leading to immunotoxicity. Based on the data from a series of human exposure studies, free T-2 toxin, HT-2 toxin, and HT-2–4-glucuronide should be considered human T-2 toxin biomarkers in the urine. The present review focuses on novel findings related to the metabolism, immunotoxicity, and human exposure assessment of T-2 toxin and its modified forms. In particular, the immunotoxicity mechanisms of T-2 toxin and the toxicity mechanism of its modified form, as well as human T-2 toxin biomarkers, are discussed. This work will contribute to an improved understanding of the immunotoxicity mechanism of T-2 toxin and its modified forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AhR:

Aryl hydrocarbon receptor

AKNA:

AT-hook transcriptionfactor

Akt:

Serine/threonine protein kinase

ARE:

Antioxidant response element

CREB:

CAMP-response clement-binding protein

CYP450:

Cytochrome P450

DAS:

Diacetoxyscirpenol

DRP-1:

Dynamin-related protein 1

DON:

Deoxynivalenol

D3G:

Deoxynivalenol-3-glucoside

ECM:

Extracellular matrix

EIF2AK2:

Double-stranded RNA-activated protein kinase

ERK:

Etracellular signaling kinase

FXR:

Farnesoid X receptor

GH:

Growth hormone

GSTs:

Glutathione S-transferase

Hck:

Hemopoietic cell kinase

HIFs:

Hypoxia-inducible factors

HT-2:

HT-2 toxin

HT-2-β-Glc:

HT-2–3-β-glucoside

HT-2-3Glc:

HT-2–3-glucoside

HT2-3-GlcA:

HT-2–3-glucuronide

HT2-4-GlcA:

HT-2–4-glucuronide

IAPs:

Inhibitors of apoptosis proteins

IFN-γ:

Interferon-γ

ILVs:

Intraluminal vesicles

IRE1α:

Inositol requiring enzyme 1α

JAK:

Janus kinase

JNK:

C-jun amino-terminal kinase

LITAF:

Lipopolysaccharide-induced TNF factor

MAPK:

Mitogen-activated protein kinase

MMP:

Matrix metalloprotein

MT:

Methytransferase

mTORC2:

Mammalian target of rapamycin 2

MVEs:

Multivesicular endosomes

MyD88:

Myeloid differentiation factor 88

NATs:

Arylamine N-acetyltransferase

NEO:

Neosolaniol

NEO-3Glc:

Neosolaniol-3-glucoside

NF-Y:

Nuclear factor-Y

NOX:

NADPH oxidases

Nrf1:

Nuclear respiratory factor 1

Nrf2:

Nuclear erythroid 2-related factor 2

PKR:

RNA-activated protein kinase R

PRRSV:

Porcine reproductive and respiratory syndrome virus

RASSF4:

Ras association domain family 4

RIPK2:

Recombinant receptor interacting serine threonine kinase 2

ROS:

Reactive oxygen species

RSR:

Ribotoxic stress response

sEVs:

Small extracellular vesicles

SOCS1:

Suppressors of cytokine signaling members 1

StAR:

Steroidogenic acute regulatory protein

STAT:

Signal transducers and activators of the transcription

SULT:

Sulfotransferase

T-2:

T-2 toxin

T-2-α-Glc:

T-2–3-α-glucoside

T-2-β-Glc:

T-2–3-β-glucoside

T-2-3Glc:

T-2–3-glucoside

T2-3-GlcA:

T-2–3-glucuronide

TBK1:

TANK-binding kinase 1

TGF-β:

Transforming growth factor-β

TLR:

Toll-like receptors

UGT:

Uridine diphosphate glucuronyl transferase

XBP1:

X-box binding protein 1

XRE:

Xenobiotic-responsive element

References

  • Abdallah MF, Girgin G, Baydar T, Krska R, Sulyok M (2017) Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maize samples from Egypt using LC–MS/MS. J Sci Food Agric 97(13):4419–4428

    CAS  Google Scholar 

  • Aberg AT, Solyakov A, Bondesson U (2013) Development and in-house validation of an LC-MS/MS method for the quantification of the mycotoxins deoxynivalenol, zearalenone, T-2 and HT-2 toxin, ochratoxin A and fumonisin B1 and B2 in vegetable animal feed. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30(3):541–549

    Google Scholar 

  • Abia WA, Warth B, Sulyok M et al (2013) Bio-monitoring of mycotoxin exposure in Cameroon using a urinary multi-biomarker approach. Food Chem Toxicol 62:927–934

    CAS  Google Scholar 

  • Aga M, Bentz GL, Raffa S, Torrisi MR, Kondo S, Wakisaka N, Yoshizaki T, Pagano JS, Shackelford J (2014) Exosomal HIF1alpha supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene 33(37):4613–4622

    CAS  Google Scholar 

  • Agrawal M, Yadav P, Lomash V, Bhaskar ASB, Rao PVL (2012) T-2 toxin induced skin inflammation and cutaneous injury in mice. Toxicology 302(2–3):255–265

    CAS  Google Scholar 

  • Agrawal M, Bhaskar ASB, Rao PVL (2015) Involvement of mitogen-activated protein kinase pathway in T-2 toxin-induced cell cycle alteration and apoptosis in human neuroblastoma cells. Mol Neurobiol 51(3):1379–1394

    CAS  Google Scholar 

  • Ali N, Degen GH (2018) Urinary biomarkers of exposure to the mycoestrogen zearalenone and its modified forms in German adults. Arch Toxicol 92(8):2691–2700

    CAS  Google Scholar 

  • Ali N, Munoz K, Degen GH (2017) Ochratoxin A and its metabolites in urines of German adults—an assessment of variables in biomarker analysis. Toxicol Lett 275:19–26

    CAS  Google Scholar 

  • Ali N, Hossain K, Degen GH (2018) Blood plasma biomarkers of citrinin and ochratoxin A exposure in young adults in Bangladesh. Mycotoxin Res 34(1):59–67

    CAS  Google Scholar 

  • Bernhoft A, Christensen E, Er C, Ivanova L (2019) The surveillance programme for feed materials, complete and complementary feed in Norway 2018—mycotoxins, fungi. In: Surveillance programmes for terrestrial and aquatic animals in Norway. Annual report 2018. Oslo: Norwegian Veterinary Institute

  • Berthiller F, Crews C, Dall'Asta C et al (2013) Masked mycotoxins: a review. Mol Nutr Food Res 57(1):165–186

    CAS  Google Scholar 

  • Bin-Umer MA, McLaughlin JE, Butterly MS, McCormick S, Tumer NE (2014) Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes. Proc Natl Acad Sci USA 111(32):11798–11803

    CAS  Google Scholar 

  • Boyle JP, Parkhouse R, Monie TP (2014) Insights into the molecular basis of the NOD2 signalling pathway. Open Biol 4(12):140–178

    Google Scholar 

  • Broekaert N, Devreese M, De Baere S, De Backer P, Croubels S (2015) Modified Fusarium mycotoxins unmasked: from occurrence in cereals to animal and human excretion. Food Chem Toxicol 80:17–31

    CAS  Google Scholar 

  • Broekaert N, Devreese M, van Bergen T et al (2016) In vivo contribution of deoxynivalenol-3-beta-d-glucoside to deoxynivalenol exposure in broiler chickens and pigs: oral bioavailability, hydrolysis and toxicokinetics. Arch Toxicol 91(2):699–712

    Google Scholar 

  • Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 85(6):705–717

    CAS  Google Scholar 

  • Cano-Sancho G, Valle-Algarra FM, Jimenez M et al (2011) Presence of trichothecenes and co-occurrence in cereal-based food from Catalonia (Spain). Food Control 22(3–4):490–495

    CAS  Google Scholar 

  • Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95(20):11715–11720

    CAS  Google Scholar 

  • Chaudhari M, Jayaraj R, Bhaskar ASB, Lakshmana Rao PV (2009) Oxidative stress induction by T-2 toxin causes DNA damage and triggers apoptosis via caspase pathway in human cervical cancer cells. Toxicology 262(2):153–161

    CAS  Google Scholar 

  • Chen Y, Azad MB, Gibson SB (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16(7):1040–1052

    CAS  Google Scholar 

  • Chen R, Lai UH, Zhu L, Singh A, Ahmed M, Forsyth NR (2018) Reactive oxygen species formation in the brain at different oxygen levels: the role of hypoxia inducible factors. Front Cell Dev Biol 6:132

    Google Scholar 

  • Chen X, Xu J, Liu D et al (2019a) The aggravating effect of selenium deficiency on T-2 toxin-induced damage on primary cardiomyocyte results from a reduction of protective autophagy. Chem Biol Interact 300:27–34

    CAS  Google Scholar 

  • Chen YQ, Han SS, Wang Y, Li DY, Zhao XL, Zhao Q, Yin HD (2019b) oxidative stress and apoptotic changes in broiler chicken splenocytes exposed to T-2 toxin. Biomed Res Int 2019:5493870

    Google Scholar 

  • Choi YJ, Shin HW, Chun YS et al (2016) Diacetoxyscirpenol as a new anticancer agent to target hypoxia-inducible factor 1. Oncotarget 7(38):62107–62122

    Google Scholar 

  • Choudhry H, Harris AL (2018) Advances in hypoxia-inducible factor biology. Cell Metab 27(2):281–298

    CAS  Google Scholar 

  • Cogan T, Hawkey R, Higgie E et al (2017) Silage and total mixed ration hygienic quality on commercial farms: implications for animal production. Grass Forage Sci 72(4):601–613

    CAS  Google Scholar 

  • Dai DP, Pan YH, Zeng CP et al (2020) Activated FXR promotes xenobiotic metabolism of T-2 toxin and attenuates oxidative stress in broiler chicken liver. Chem Biol Interact 316:108912

    CAS  Google Scholar 

  • Dall’Erta A, Cirlini M, Dall’Asta M et al (2013) Masked mycotoxins are efficiently hydrolyzed by human colonic microbiota releasing their aglycones. Chem Res Toxicol 26(3):305–312

    Google Scholar 

  • Daud N, Currie V, Duncan G, Busman M, Gratz SW (2019) Intestinal hydrolysis and microbial biotransformation of diacetoxyscirpenol-α-glucoside, HT-2-β-glucoside and N-(1-deoxy-d-fructos-1-yl) fumonisin B1 by human gut microbiota in vitro. Int J Food Sci Nutr 70(3):1–9

    Google Scholar 

  • Davila JC, Morris DL (1999) Analysis of cytochrome P450 and phase II conjugating enzyme expression in adult male rat hepatocytes. Vitro Cell Dev Biol Anim 35(3):120–130

    CAS  Google Scholar 

  • De Saeger S, van Egmond HP (2012) Special issue: masked mycotoxins foreword. World Mycotoxin J 5(3):203–206

    Google Scholar 

  • Deng Q, Qiu M, Wang YL et al (2017a) A sensitive and validated immunomagnetic-bead based enzyme-linked immunosorbent assay for analyzing total T-2 (free and modified) toxins in shrimp tissues. Ecotoxicol Environ Saf 142:441–447

    CAS  Google Scholar 

  • Deng Y, Wang Y, Zhang X et al (2017b) Effects of T-2 toxin on pacific white shrimp litopenaeus vannamei: growth, and antioxidant defenses and capacity and histopathology in the hepatopancreas. J Aquat Anim Health 29(1):15–25

    CAS  Google Scholar 

  • Deng YJ, Wang YL, Sun LJ et al (2018) Biotransformation enzyme activities and phase I metabolites analysis in Litopenaeus vannamei following intramuscular administration of T-2 toxin. Drug Chem Toxicol 41(1):113–122

    CAS  Google Scholar 

  • Deng YJ, Qiu M, Wang YL et al (2019) Protective effect of antioxidant-enriched diets on T-2-toxin-induced damage in tilapia (Oreochromis niloticus). Aquaculture 506:341–349

    CAS  Google Scholar 

  • Doi K, Uetsuka K (2014) Mechanisms of mycotoxin-induced dermal toxicity and tumorigenesis through oxidative stress-related pathways. J Toxicol Pathol 27(1):1–10

    CAS  Google Scholar 

  • Dong M, Si W, Wang W et al (2016) Determination of type A trichothecenes in coix seed by magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes coupled with ultra-high performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 408:6823–6831

    CAS  Google Scholar 

  • EFSA (2011) Scientific Opinion on the risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J 9(12):2481–2668

    Google Scholar 

  • EFSA (2017) Appropriateness to set a group health based guidance value for T2 and HT2 toxin and its modified forms. EFSA J 15(1):4655–4708

    Google Scholar 

  • Elaridi J, Yamani O, Al Matari A, Dakroub S, Attieh Z (2019) Determination of ochratoxin A (OTA), ochratoxin B (OTB), T-2, and HT-2 toxins in wheat grains, wheat flour, and bread in Lebanon by LC–MS/MS. Toxins 11(8):471

    CAS  Google Scholar 

  • Escriva L, Font G, Manyes L (2015) In vivo toxicity studies of fusarium mycotoxins in the last decade: a review. Food Chem Toxicol 78:185–206

    CAS  Google Scholar 

  • Ezekiel CN, Warth B, Ogara IM et al (2014) Mycotoxin exposure in rural residents in northern Nigeria: a pilot study using multi-urinary biomarkers. Environ Int 66:138–145

    CAS  Google Scholar 

  • Fan K, Xu J, Jiang K et al (2019) Determination of multiple mycotoxins in paired plasma and urine samples to assess human exposure in Nanjing, China. Environ Pollut 248:865–873

    CAS  Google Scholar 

  • Fang H, Cong L, Zhi Y, Xu H, Jia X, Peng S (2016) T-2 toxin inhibits murine ES cells cardiac differentiation and mitochondrial biogenesis by ROS and p-38 MAPK-mediated pathway. Toxicol Lett 258:259–266

    CAS  Google Scholar 

  • Flueck K, Breves G, Fandrey J, Winning S (2016) Hypoxia-inducible factor 1 in dendritic cells is crucial for the activation of protective regulatory T cells in murine colitis. Mucosal Immunol 9(2):379–390

    CAS  Google Scholar 

  • Freire L, Sant'Ana AS (2018) Modified mycotoxins: an updated review on their formation, detection, occurrence, and toxic effects. Food Chem Toxicol 111:189–205

    CAS  Google Scholar 

  • Ge X, Wang J, Liu J, Jiang J, Lin H, Wu J, Quyang M, Tang X, Zheng M, Liao M, Deng Y (2010) The catalytic activity of cytochrome P450 3A22 is crucial for the metabolism of T-2 toxin in procine reservoirs. Catal Comun 12:71–75

    CAS  Google Scholar 

  • Gerding J, Cramer B, Humpf H-U (2014) Determination of mycotoxin exposure in Germany using an LC–MS/MS multibiomarker approach. Mol Nutr Food Res 58(12):2358–2368

    CAS  Google Scholar 

  • Gerding J, Ali N, Schwartzbord J et al (2015) A comparative study of the human urinary mycotoxin excretion patterns in Bangladesh, Germany, and Haiti using a rapid and sensitive LC–MS/MS approach. Mycotoxin Res 31(3):127–136

    CAS  Google Scholar 

  • Gonzalez-Osnaya L, Cortes C, Soriano JM, Molto JC, Manes J (2011) Occurrence of deoxynivalenol and T-2 toxin in bread and pasta commercialised in Spain. Food Chem 124(1):156–161

    CAS  Google Scholar 

  • Gratz SW, Duncan G, Richardson AJ (2013) The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3-glucoside and may be responsible for urinary de-epoxy-deoxynivalenol. Appl Environ Microbiol 79:1821–1825

    CAS  Google Scholar 

  • Gratz SW, Dinesh R, Yoshinari T et al (2017) Masked trichothecene and zearalenone mycotoxins withstand digestion and absorption in the upper GI tract but are efficiently hydrolyzed by human gut microbiota in vitro. Mol Nutr Food Res 61(4):1600680

    Google Scholar 

  • Gratz SW, Currie V, Duncan G, Jackson D (2020) Multimycotoxin exposure assessment in UK children using urinary biomarkers—a pilot survey. J Agric Food Chem 68(1):351–357

    CAS  Google Scholar 

  • Gruber-Dorninger C, Jenkins T, Schatzmayr G (2018) Multi-mycotoxin screening of feed and feed raw materials from Africa. World Mycotoxin Journal 11(3):369–383

    CAS  Google Scholar 

  • Guo P, Qiao F, Huang D et al (2020) MiR-155-5p plays as a “janus” in the expression of inflammatory cytokines induced by T-2 toxin. Food Chem Toxicol 140:111258

    CAS  Google Scholar 

  • Haque MA, Wang Y, Shen Z, Li X, Saleemi MK, He C (2020) Mycotoxin contamination and control strategy in human, domestic animal and poultry: a review. Microb Pathog 142:104095

    CAS  Google Scholar 

  • Hayashi Y, Yokota A, Harada H, Huang G (2019) Hypoxia/pseudohypoxia-mediated activation of hypoxia-inducible factor-1 in cancer. Cancer Sci 110(5):1510–1517

    CAS  Google Scholar 

  • Heyndrickx E, Sioen I, Huybrechts B, Callebaut A, De Henauw S, De Saeger S (2015) Human biomonitoring of multiple mycotoxins in the Belgian population: results of the BIOMYCO study. Environ Int 84:82–89

    CAS  Google Scholar 

  • Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, Tsai PH et al (2017) Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene 36(34):4929–4942

    CAS  Google Scholar 

  • Hu C, Chen MJ, Jiang RL, Guo YY, Wu MH, Zhang X (2018) Exosome-related tumor microenvironment. J Cancer 9(17):3084–3092

    Google Scholar 

  • Huang C, Zhang Q, Feng W (2015a) Regulation and evasion of antiviral immune responses by porcine reproductive and respiratory syndrome virus. Virus Res 202:101–111

    CAS  Google Scholar 

  • Huang X, Chen L, Liu W et al (2015b) Involvement of oxidative stress and cytoskeletal disruption in microcystin-induced apoptosis in CIK cells. Aquat Toxicol 165:41–50

    CAS  Google Scholar 

  • Huang ZR, Wang YL, Wang XB et al (2017) Effect of masked T-2 toxin residues in Litopenaeus vannamei on routine blood and serum biochemical indexes of mice. Acta Agriculturae Zhejiangensis 29(7):1110–1118

    Google Scholar 

  • Huang DY, Cui LQ, Liu XL et al (2018) Protective mechanisms involving enhanced mitochondrial functions and mitophagy against T-2 toxin-induced toxicities in GH3 cells. Toxicol Lett 295:41–53

    Google Scholar 

  • Kalantari H, Moosavi M (2010) Review on T-2 toxin. Nat Pharmfcentical Prodacts 5(1):26–38

    Google Scholar 

  • Kasimir M, Behrens M, Schulz M, Kuchenbuch H, Focke C, Humpf HU (2020) Intestinal metabolism of alpha- and beta-glucosylated modified mycotoxins T-2 and HT-2 toxin in the pig cecum model. Agric Food Chem 68(19):5455–5461

    CAS  Google Scholar 

  • Kocasari FS, Mor F, Oguz MN, Oguz FK (2013) Occurrence of mycotoxins in feed samples in Burdur Province. Turkey Environ Monit Assess 185(6):4943–4949

    CAS  Google Scholar 

  • Kongkapan J, Poapolathep S, Isariyodom S, Kumagai S, Poapolathep A (2016) Simultaneous detection of multiple mycotoxins in broiler feeds using a liquid chromatography tandem-mass spectrometry. J Vet Med Sci 78(2):259–264

    CAS  Google Scholar 

  • Koppenol A, Branco Beirao BC, Ingberman M, Caron LF (2019) Measuring peripheral and some mucosal immune cells to better understand immunomodulation by T-2 toxin in broilers. J Appl Poult Res 28(4):837–845

    CAS  Google Scholar 

  • Kosicki R, Blajet-Kosicka A, Grajewski J, Twaruzek M (2016) Multiannual mycotoxin survey in feed materials and feedingstuffs. Anim Feed Sci Technol 215:165–180

    CAS  Google Scholar 

  • Kumar A, Deep G (2020) Hypoxia in tumor microenvironment regulates exosome biogenesis: molecular mechanisms and translational opportunities. Cancer Lett 479:23–30

    CAS  Google Scholar 

  • Lattanzio VMT, Ciasca B, Haidukowski M, Infantino A, Visconti A, Pascale M (2013) Mycotoxin profile of Fusarium langsethiae isolated from wheat in Italy: production of type-A trichothecenes and relevant glucosyl derivatives. J Mass Spectrom 48(12):1291–1298

    CAS  Google Scholar 

  • Lattanzio VMT, Ciasca B, Terzi V, Ghizzoni R, McCormick SP, Pascale M (2015) Study of the natural occurrence of T-2 and HT-2 toxins and their glucosyl derivatives from field barley to malt by high-resolution Orbitrap mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32(10):1647–1655

    CAS  Google Scholar 

  • Leiva A, Méndez G, Rodríguez C, Molina A, Granados-Chinchilla F (2019) Chemical assessment of mycotoxin contaminants and veterinary residues in Costa Rican animal feed. Int J Food Contam 6(1):5

    Google Scholar 

  • Li M, Cuff CF, Pestka JJ (2006) T-2 toxin impairment of enteric reovirus clearance in the mouse associated with suppressed immunoglobulin and IFN-γ responses. Toxic Appl Pharmacol 214:318–325

    CAS  Google Scholar 

  • Li YS, Wang ZH, Beier RC et al (2011) T-2 Toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. J Agric Food Chem 59(8):3441–3453

    CAS  Google Scholar 

  • Lin N-N, Chen J, Xu B, Wei X, Guo L, Xie J-W (2015) The roles of carboxylesterase and CYP isozymes on the in vitro metabolism of T-2 toxin. Mil Med Res 2:13–13

    Google Scholar 

  • Lin R, Sun Y, Ye W, Zheng T, Wen J, Deng Y (2019) T-2 toxin inhibits the production of mucin via activating the IRE1/XBP1 pathway. Toxicology 424:152230

    CAS  Google Scholar 

  • Ling AR, Sun LW, Guo WB, Sun SY, Yang JH, Zhao ZH (2020) Individual and combined cytotoxic effects of T-2 toxin and its four metabolites on porcine Leydig cells. Food Chem Toxicol 139:111277

    CAS  Google Scholar 

  • Liu JT, Wang LL, Guo X et al (2014) The role of mitochondria in T-2 toxin-induced human chondrocytes apoptosis. PLoS ONE 9(9):e108394

    Google Scholar 

  • Liu D-w, Liu H-y, Zhang H-b, Cao M-c, Sun Y, Wu W-d, Lu C-h (2016a) Potential natural exposure of endangered red-crowned crane (Grus japonensis) to mycotoxins aflatoxin B-1, deoxynivalenol, zearalenone, T-2 toxin, and ochratoxin A. J Zhejiang Univ Sci B 17:158–168

    CAS  Google Scholar 

  • Liu X, Wen J, Chen R, Zhang T, Jiang J, Deng Y (2016b) T-2 toxin induces the expression of porcine CYP3A22 via the upregulation of the transcription factor, NF-Y. Biochimica et Biophysica Acta (BBA) Gen Subj 10:2191–2201

    Google Scholar 

  • Liu X, Guo P, Liu A et al (2017a) Nitric oxide (NO)-mediated mitochondrial damage plays a critical role in T-2 toxin-induced apoptosis and growth hormone deficiency in rat anterior pituitary GH3 cells. Food Chem Toxicol 102:11–23

    CAS  Google Scholar 

  • Liu X, Huang D, Guo P et al (2017b) PKA/CREB and NF-κB pathway regulates AKNA transcription: a novel insight into T-2 toxin-induced inflammation and GH deficiency in GH3 cells. Toxicology 392:81–95

    CAS  Google Scholar 

  • Liu A, Sun Y, Wang X et al (2019a) DNA methylation is involved in pro-inflammatory cytokines expression in T-2 toxin-induced liver injury. Food Chem Toxicol 132:110661

    CAS  Google Scholar 

  • Liu A, Xu X, Hou R et al (2019b) DNA methylation and RASSF4 expression are involved in T-2 toxin-induced hepatotoxicity. Toxicology 425:152246

    CAS  Google Scholar 

  • Liu Q, Wen J, Zhu J, Zhang T, Deng Y, Jiang J (2019c) Aromatic hydrocarbon receptor regulates chicken cytochrome P450 1A5 transcription: a novel insight into T-2 toxin-induced gene expression and cytotoxicity in LMH cells. Biochem Pharmacol 168:319–329

    CAS  Google Scholar 

  • Liu X, Guo P, Huang D, Dai M, Cheng G, Wang X (2019d) The important role of pka/creb and NF-κB/P65 signaling pathways in regulating the transcription factor AKNA in cells after the exposure of T-2 toxin. Toxicon 158:S7

    Google Scholar 

  • Ma S, Zhao Y, Sun J et al (2018) miR449a/SIRT1/PGC-1 alpha Is necessary for mitochondrial biogenesis induced by T-2 toxin. Front Pharmacol 8:954

    Google Scholar 

  • Manresa MC, Taylor CT (2017) Hypoxia inducible factor (HIF) hydroxylases as regulators of intestinal epithelial barrier function. Cell Mol Gastroenterol Hepatol 3(3):303–315

    Google Scholar 

  • Mathieu M, Martin-Jaular L, Lavieu G, Thery C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21(1):9–17

    CAS  Google Scholar 

  • McCormick SP, Kato T, Maragos CM et al (2015) Anomericity of T-2 toxin-glucoside: masked mycotoxin in cereal crops. J Agric Food Chem 63(2):731–738

    CAS  Google Scholar 

  • Miao WM, Hu LG, Scrivens PJ, Batist G (2005) Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway—direct cross-talk between phase I and II drug-metabolizing enzymes. J Biol Chem 280(21):20340–20348

    CAS  Google Scholar 

  • Michlmayr H, Varga E, Malachova A, Nguyen NT, Lorenz C, Haltrich D, Berthiller F, Adam G (2015) A versatile family 3 glycoside hydrolase from Bifidobacterium adolescentis hydrolyzes β-glucosides of the fusarium mycotoxins deoxynivalenol, nivalenol, and HT-2 toxin in cereal matrices. Appl Environ Microbiol 81(15):4885–4893

    CAS  Google Scholar 

  • Moreira GM, Nicolli CP, Gomes LB et al (2020) Nationwide survey reveals high diversity of Fusarium species and related mycotoxins in Brazilian rice: 2014 and 2015 harvests. Food Control 113:107171

    CAS  Google Scholar 

  • Muenst S, Laubli H, Soysal SD, Zippelius A, Tzankov A, Hoeller S (2016) The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med 279(6):541–562

    CAS  Google Scholar 

  • Nathanail AV, Syvahuoko J, Malachova A et al (2015a) Simultaneous determination of major type A and B trichothecenes, zearalenone and certain modified metabolites in Finnish cereal grains with a novel liquid chromatography-tandem mass spectrometric method. Anal Bioanal Chem 407(16):4745–4755

    CAS  Google Scholar 

  • Nathanail AV, Varga E, Meng-Reiterer J et al (2015b) Metabolism of the Fusarium mycotoxins T-2 toxin and HT-2 toxin in wheat. J Agric Food Chem 63(35):7862–7872

    CAS  Google Scholar 

  • Paquette M, El-Houjeiri L, Pause A (2018) mTOR Pathways in cancer and autophagy. Cancers 10(1):18

    Google Scholar 

  • Payros D, Alassane-Kpembi I, Pierron A, Loiseau N, Pinton P, Oswald IP (2016) Toxicology of deoxynivalenol and its acetylated and modified forms. Arch Toxicol 90(12):2931–2957

    CAS  Google Scholar 

  • Pestka JJ (2008) Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25(9):1128–1140

    CAS  Google Scholar 

  • Pestka JJ (2010) Deoxynivalenol-induced proinflammatory gene expression: mechanisms and pathological sequelae. Toxins 2(6):1300–1317

    CAS  Google Scholar 

  • Pestka JJ, Zhou HR, Moon Y, Chung YJ (2004) Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol Lett 153(1):61–73

    CAS  Google Scholar 

  • Pettersson H, Brown C, Hauk J, Hoth S, Meyer J, Wessels D (2011) Survey of T-2 and HT-2 toxins by LC-MS/MS in oats and oat products from European oat mills in 2005–2009. Food Addit Contam Part B Surveill 4(2):110–115

    CAS  Google Scholar 

  • Peyssonnaux C, Cejudo-Martin P, Doedens A, Zinkernagel AS, Johnson RS, Nizet V (2007) Cutting edge: essential role of hypoxia inducible factor-1 alpha in development of lipopolysaccharide-induced sepsis. J Immunol 178(12):7516–7519

    CAS  Google Scholar 

  • Pierron A, Alassane-Kpembi I, Oswald IP (2016) Impact of mycotoxin on immune response and consequences for pig health. Anim Nutr (Zhongguo xu mu shou yi xue hui) 2(2):63–68

    Google Scholar 

  • Pleadin J, Vasilj V, Kudumija N, Petrović D, Vilušić M, Škrivanko M (2017) Survey of T-2/HT-2 toxins in unprocessed cereals, food and feed coming from Croatia and Bosnia and Herzegovina. Food Chem 224:153–159

    CAS  Google Scholar 

  • Pugh CW, Orourke JF, Nagao M, Gleadle JM, Ratcliffe PJ (1997) Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 272(17):11205–11214

    CAS  Google Scholar 

  • Qiu M, Wang Y, Wang X et al (2016) Effects of T-2 toxin on growth, immune function and hepatopancreas microstructure of shrimp (Litopenaeus vannamei). Aquaculture 462:35–39

    CAS  Google Scholar 

  • Riazipour M, Fooladi AAI, Razzaghi-Abyaneh M (2009) Natural occurrence of T-2 toxin in domestic and imported rice. Iran J Public Health 38(4):111–116

    CAS  Google Scholar 

  • Righetti L, Korber T, Ralli E et al (2019) Plant biotransformation of T2 and HT2 toxin in cultured organs of Triticum durum Desf. Sci Rep 9:14320

    Google Scholar 

  • Rius J, Guma M, Schachtrup C et al (2008) NF-kappa B links innate immunity to the hypoxic response through transcriptional regulation of HIF-1 alpha. Nature 453(7196):807–U9

    CAS  Google Scholar 

  • Rodriguez-Carrasco Y, Molto JC, Manes J, Berrada H (2014) Exposure assessment approach through mycotoxin/creatinine ratio evaluation in urine by GC-MS/MS. Food Chem Toxicol 72:69–75

    CAS  Google Scholar 

  • Rui Z, Huali X, Min S et al (2020) Mechanism of Ca2+-mediated NOX modulated in ROS metabolism induced by T-2 toxin in potato tuber. Food Chem 317:126416

    CAS  Google Scholar 

  • Rychlik M, Humpf HU, Marko D et al (2014) Proposal of a comprehensive definition of modified and other forms of mycotoxins including "masked" mycotoxins. Mycotoxin Res 30(4):197–205

    CAS  Google Scholar 

  • Sadaghianloo N, Yamamoto K, Bai H et al (2017) Increased oxidative stress and hypoxia inducible factor-1 expression during arteriovenous fistula maturation. Ann Vasc Surg 41:225–234

    Google Scholar 

  • Savard C, Gagnona CA, Chorfi Y (2015) Deoxynivalenol (DON) naturally contaminated feed impairs the immune response induced by porcine reproductive and respiratory syndrome virus (PRRSV) live attenuated vaccine. Vaccine 33:3881–3886

    CAS  Google Scholar 

  • Schollenberger M, Suchy S, Jara HT, Drochner W, MÜller H-M (1999) A survey of Fusarium toxins in cereal-based foods marketed in an area of southwest Germany. Mycopathologia 147(1):49–57

    CAS  Google Scholar 

  • Seeboth J, Solinhac R, Oswald IP, Guzylack-Piriou L (2012) The fungal T-2 toxin alters the activation of primary macrophages induced by TLR-agonists resulting in a decrease of the inflammatory response in the pig. Vet Res 43:35

    CAS  Google Scholar 

  • Serrano AB, Font G, Ruiz MJ, Ferrer E (2012) Co-occurrence and risk assessment of mycotoxins in food and diet from Mediterranean area. Food Chem 135(2):423–429

    CAS  Google Scholar 

  • Shao M, Li L, Gu Z et al (2018) Mycotoxins in commercial dry pet food in China. Food Addit Contam Part B Surveill 11(4):237–245

    CAS  Google Scholar 

  • Sharma V, Dixit D, Koul N, Mehta VS, Sen E (2011) Ras regulates interleukin-1 beta-induced HIF-1 alpha transcriptional activity in glioblastoma. J Mol Med 89(2):123–136

    CAS  Google Scholar 

  • Spranger S, Gajewski TF (2018) Impact of oncogenic pathways on evasion of antitumour immune responses. Nat Rev Cancer 18(3):139–147

    CAS  Google Scholar 

  • Steinkellner H, Binaglia M, Dall'Asta C et al (2019) Combined hazard assessment of mycotoxins and their modified forms applying relative potency factors: Zearalenone and T2/HT2 toxin. Food Chem Toxicol 131:110599

    CAS  Google Scholar 

  • Stuart JA, Aibueku O, Bagshaw O, Moradi F (2019) Hypoxia inducible factors as mediators of reactive oxygen/nitrogen species homeostasis in physiological normoxia. Med Hypotheses 129:109249

    CAS  Google Scholar 

  • Sugiyama K-i, Muroi M, Tanamoto K-i, Nishijima M, Sugita-Konishi Y (2010) Deoxynivalenol and nivalenol inhibit lipopolysaccharide-induced nitric oxide production by mouse macrophage cells. Toxicol Lett 192(2):150–154

    CAS  Google Scholar 

  • Sugiyama K-i, Muroi M, Kinoshita M et al (2016) NF-kappa B activation via MyD88-dependent Toll-like receptor signaling is inhibited by trichothecene mycotoxin deoxynivalenol. J Toxicol Sci 41(2):273–279

    CAS  Google Scholar 

  • Sun L, Cui S, Deng Q, Liu H, Cao Y, Wang S, Yu J (2019) Selenium content and/or T-2 toxin contamination of cereals, soil, and children's hair in some areas of Heilongjiang and Gansu Provinces, China. Biol Trace Elem Res 191:294–299

    CAS  Google Scholar 

  • Tang Y, Li J, Li F et al (2015) Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway. Free Radical Biol Med 89:944–951

    CAS  Google Scholar 

  • Tian J, Yan J, Wang W et al (2012) T-2 toxin enhances catabolic activity of hypertrophic chondrocytes through ROS-NF-κB-HIF-2α pathway. Toxicol Vitro 26(7):1106–1113

    CAS  Google Scholar 

  • Tima H, Brueckner A, Mohacsi-Farkas C, Kisko G (2016a) Fusarium mycotoxins in cereals harvested from Hungarian fields. Food Addit Contam Part B Surveill 9(2):127–131

    CAS  Google Scholar 

  • Tima H, Racz A, Guld Z, Mohacsi-Farkas C, Kisko G (2016b) Deoxynivalenol, zearalenone and T-2 in grain based swine feed in Hungary. Food Addit Contam Part B Surveill 9(4):275–280

    CAS  Google Scholar 

  • Unusan N (2019) Systematic review of mycotoxins in food and feeds in Turkey. Food Control 97:1–14

    CAS  Google Scholar 

  • Ureshino RP, Rocha KK, Lopes GS, Bincoletto C, Smaili SS (2014) Calcium signaling alterations, oxidative stress, and autophagy in aging. Antioxid Redox Signal 21(1):123–137

    CAS  Google Scholar 

  • van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228

    Google Scholar 

  • van Uden P, Kenneth NS, Rocha S (2008) Regulation of hypoxia-inducible factor-1 alpha by NF-kappa B. Biochem J 412:477–484

    Google Scholar 

  • Vanhulle VP, Martiat GA, Verbeeck RK et al (2001) Cryopreservation of rat precision-cut liver slices by ultrarapid freezing—influence on phase I and II metabolism and on cell viability upon incubation for 24 hours. Life Sci 68(21):2391–2403

    CAS  Google Scholar 

  • Veprikova Z, Vaclavikova M, Lacina O, Dzuman Z, Zachariasova M, Hajslova J (2012) Occurrence of mono- and di-glycosylated conjugates of T-2 and HT-2 toxins in naturally contaminated cereals. World Mycotoxin J 5(3):231–240

    CAS  Google Scholar 

  • Vidal A, Mengelers M, Yang SP, De Saeger S, De Boevre M (2018) Mycotoxin biomarkers of exposure: a comprehensive review. Compr Rev Food Sci Food Saf 17(5):1127–1155

    Google Scholar 

  • Vu HL, Kwon B, Yoon KJ et al (2011) Immune evasion of porcine reproductive and respiratory syndrome virus through glycan shielding involves both glycoprotein 5 as well as glycoprotein 3. J Virol 85(11):5555–5564

    CAS  Google Scholar 

  • Wan D, Wang X, Wu Q et al (2015a) Integrated transcriptional and proteomic analysis of growth hormone suppression mediated by trichothecene T-2 toxin in rat GH3 cells. Toxicol Sci 147(2):326–338

    CAS  Google Scholar 

  • Wan Q, Wu G, He Q, Tang H, Wang Y (2015b) The toxicity of acute exposure to T-2 toxin evaluated by the metabonomics technique. Mol BioSyst 11(3):882–891

    CAS  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor-1 is a basic-helix-loop-helix-pas heterodimer regulated by cellular O-2 tension. Proc Natl Acad Sci USA 92(12):5510–5514

    CAS  Google Scholar 

  • Wang X, Liu Q, Ihsan A et al (2012) JAK/STAT pathway plays a critical role in the proinflammatory gene expression and apoptosis of RAW264.7 cells induced by trichothecenes as DON and T-2 toxin. Toxicol Sci 127(2):412–424

    CAS  Google Scholar 

  • Wang Y, Yi J, Chen X, Zhang Y, Xu M, Yang Z (2016) The regulation of cancer cell migration by lung cancer cell-derived exosomes through TGF-beta and IL-10. Oncol Lett 11(2):1527–1530

    CAS  Google Scholar 

  • Wang X, Wang Y, Qiu M et al (2017a) Cytotoxicity of T-2 and modified T-2 toxins: induction of JAK/STAT pathway in RAW264.7 cells by hepatopancreas and muscle extracts of shrimp fed with T-2 toxin. Toxicol Res 6(2):144–151

    CAS  Google Scholar 

  • Wang X, Wang Y, Wang Y, Sun L, Gooneratne R (2017b) Preparation of T-2-glucoronide with rat hepatic microsomes and its use along with T-2 for activation of the JAK/STAT signaling pathway in RAW264.7 cells. J Agric Food Chem 65(23):4811–4818

    CAS  Google Scholar 

  • Wang J, Yang CL, Yuan ZH, Yi J, Wu J (2018a) T-2 Toxin exposure induces apoptosis in TM3 Cells by inhibiting mammalian target of rapamycin/serine/threonine protein kinase(mTORC2/AKT) to Promote Ca(2+)production. Int J Mol Sci 19(11):3360

    Google Scholar 

  • Wang X, Qiu M, Wang Y et al (2018b) Effect of masked T-2 toxin in Litopenaeus vannamei on growth and development and cytogenetic toxicity of male mice. J Chin Inst Food Sci Technol 18(8):48–54

    Google Scholar 

  • Wang Y, Nie J, Yan Z, Li Z, Cheng Y, Chang W (2018c) Occurrence and co-occurrence of mycotoxins in nuts and dried fruits from China. Food Control 88:181–189

    CAS  Google Scholar 

  • Wang C, Wang X, Xiao S et al (2020a) T-2 toxin in the diet suppresses growth and induces immunotoxicity in juvenile Chinese mitten crab (Eriocheir sinensis). Fish Shellfish Immunol 97:593–601

    CAS  Google Scholar 

  • Wang W, Ji Y, Yang W et al (2020b) Inhibitors of apoptosis proteins (IAPs) are associated with T-2 toxin-induced decreased collagen II in mouse chondrocytes in vitro. Toxicon 176:34–43

    CAS  Google Scholar 

  • Wang XC, Chu XY, Cao L et al (2020c) The role and regulatory mechanism of autophagy in hippocampal nerve cells of piglet damaged by deoxynivalenol. Toxicol Vitro 66:104837

    CAS  Google Scholar 

  • Wang XC, Jiang YJ, Zhu L et al (2020d) Autophagy protects PC12 cells against deoxynivalenol toxicity via the class III PI3K/beclin 1/Bcl-2 pathway. J Cell Physiol. https://doi.org/10.1002/jcp.29433

    Article  Google Scholar 

  • Warth P, Sulyok K (2014) Utilising an LC–MS/MS-based multi-biomarker approach to assess mycotoxin exposure in the Bangkok metropolitan area and surrounding provinces. Food Addit Contam Part A 31(12):2040–2046

    CAS  Google Scholar 

  • Warth B, Fruhmann P, Wiesenberger G et al (2015) Deoxynivalenol-sulfates: identification and quantification of novel conjugated (masked) mycotoxins in wheat. Anal Bioanal Chem 407(4):1033–1039

    CAS  Google Scholar 

  • Weidner M, Huwel S, Ebert F, Schwerdtle T, Galla HJ, Humpf HU (2013) Influence of T-2 and HT-2 toxin on the blood-brain barrier in vitro: new experimental hints for neurotoxic effects. PLoS ONE 8(3):e60484

    CAS  Google Scholar 

  • Welsch T, Humpf H-U (2012) HT-2 toxin 4-glucuronide as new T-2 toxin metabolite: enzymatic synthesis, analysis, and species specific formation of T-2 and HT-2 toxin glucuronides by rat, mouse, pig, and human liver microsomes. J Agric Food Chem 60(40):10170–10178

    CAS  Google Scholar 

  • Wu QH, Dohnal V, Huang LL, Kuca K, Yuan ZH (2010) Metabolic pathways of trichothecenes. Drug Metab Rev 42(2):250–267

    CAS  Google Scholar 

  • Wu J, Jing L, Yuan H, Peng S-q (2011a) T-2 toxin induces apoptosis in ovarian granulosa cells of rats through reactive oxygen species-mediated mitochondrial pathway. Toxicol Lett 202(3):168–177

    CAS  Google Scholar 

  • Wu Q, Huang L, Liu Z et al (2011b) A comparison of hepatic in vitro metabolism of T-2 toxin in rats, pigs, chickens, and carp. Xenobiotica 41(10):863–873

    CAS  Google Scholar 

  • Wu Q-H, Wang X, Yang W et al (2014a) Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: an update. Arch Toxicol 88(7):1309–1326

    CAS  Google Scholar 

  • Wu Q, Wang X, Wan D, Li J, Yuan Z (2014b) Crosstalk of JNK1-STAT3 is critical for RAW264.7 cell survival. Cell Signal 26(12):2951–2960

    CAS  Google Scholar 

  • Wu J, Tu D, Yuan LY et al (2015) T-2 toxin regulates steroid hormone secretion of rat ovarian granulosa cells through cAMP-PKA pathway. Toxicol Lett 232(3):573–579

    CAS  Google Scholar 

  • Wu Q, Wang X, Nepovimova E et al (2017) Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch Toxicol 91(12):3737–3785

    CAS  Google Scholar 

  • Wu QH, Wu WD, Franca TCC, Jacevic V, Wang X, Kuca K (2018) Immune evasion, a potential mechanism of trichothecenes: new insights into negative immune regulations. Int J Mol Sci 19(11):3307

    Google Scholar 

  • Wu J, Zhou Y, Yuan Z et al (2019a) Autophagy and apoptosis interact to modulate T-2 toxin-induced toxicity in liver cells. Toxins 11(1):45

    CAS  Google Scholar 

  • Wu Q, Wu W, Fu B, Shi L, Wang X, Kuca K (2019b) JNK signaling in cancer cell survival. Med Res Rev 39(6):2082–2104

    CAS  Google Scholar 

  • Wu J, Chen JX, He JH (2020a) T-2 toxin-induced DRP-1-dependent mitophagy leads to the apoptosis of mice Leydig cells (TM3). Food Chem Toxicol 136:111082

    CAS  Google Scholar 

  • Wu Q, Wu W, Kuca K (2020b) From hypoxia and hypoxia-inducible factors (HIF) to oxidative stress: a new understanding of the toxic mechanism of mycotoxins. Food Chem Toxicol 135:110968

    CAS  Google Scholar 

  • Xu J, Jiang C, Zhu W et al (2015) NOD2 pathway via RIPK2 and TBK1 is involved in the aberrant catabolism induced by T-2 toxin in chondrocytes. Osteoarthr Cartil 23(9):1575–1585

    CAS  Google Scholar 

  • Xue H, Bi Y, Prusky D et al (2019) The mechanism of induced resistance against Fusarium dry rot in potato tubers by the T-2 toxin. Postharvest Biol Technol 153:69–78

    CAS  Google Scholar 

  • Yalcin NF, Isik MK, Avci T, Oguz H, Yurduseven T (2017) Investigation of mycotoxin residues in poultry feeds by LC MS/MS method. Ankara Universitesi Veteriner Fakultesi Dergisi 64(2):111–116

    Google Scholar 

  • Yang S, Li Y, Cao X, Hu D, Wang Z, Wang Y, Shen J, Zhang S (2013) Metabolic pathways of T-2 toxin in in vivo and in vitro systems of wistar rats. J Agric Food Chem 61(40):9734–9743

    CAS  Google Scholar 

  • Yang SP, De Boevre M, Zhang HY et al (2017a) Metabolism of T-2 toxin in farm animals and human in vitro and in chickens in vivo using ultra high-performance liquid chromatography—quadrupole/time-of-flight hybrid mass spectrometry along with online hydrogen/deuterium exchange technique. J Agric Food Chem 65(33):7217–7227

    CAS  Google Scholar 

  • Yang S, Van Poucke C, Wang Z, Zhang S, De Saeger S, De Boevre M (2017b) Metabolic profile of the masked mycotoxin T-2 toxin-3-glucoside in rats (in vitro and in vivo) and humans (in vitro). World Mycotoxin J 10(4):349–362

    CAS  Google Scholar 

  • Yang S, Zhang H, De Boevre M et al (2018) Toxicokinetics of HT-2 toxin in rats and its metabolic profile in livestock and human liver microsomes. J Agric Food Chem 66(30):8160–8168

    CAS  Google Scholar 

  • Yang X, Zhang X, Zhang J et al (2019) Spermatogenesis disorder caused by T-2 toxin is associated with germ cell apoptosis mediated by oxidative stress. Environ Pollut 251:372–379

    CAS  Google Scholar 

  • Yang L, Wang S, Zhao G, Wang X, Guo X (2020) Comparison of the toxic mechanism of T-2 toxin and deoxynivalenol on human chondrocytes by microarray and bioinformatics analysis. Toxicol Lett 321:61–68

    CAS  Google Scholar 

  • Ye W, Lin R, Chen X et al (2019) T-2 toxin upregulates the expression of human cytochrome P450 1A1 (CYP1A1) by enhancing NRF1 and Sp1 interaction. Toxicol Lett 315:77–86

    CAS  Google Scholar 

  • Yi Y, Zhao F, Wang N et al (2018) Endoplasmic reticulum stress is involved in the T-2 toxin-induced apoptosis in goat endometrium epithelial cells. J Appl Toxicol 38(12):1492–1501

    CAS  Google Scholar 

  • Yuan G, Wang Y, Yuan X et al (2014) T-2 toxin induces developmental toxicity and apoptosis in zebrafish embryos. J Environ Sci 26(4):917–925

    CAS  Google Scholar 

  • Zhang H, Kong X, Kang J et al (2009) Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells. Toxicol Sci 110(2):376–388

    CAS  Google Scholar 

  • Zhang Y, Han J, Zhu C et al (2016) Exposure to HT-2 toxin causes oxidative stress induced apoptosis/autophagy in porcine oocytes. Sci Rep 6:33904

    CAS  Google Scholar 

  • Zhang K, Flannery BM, Oles CJ, Adeuya A (2018) Mycotoxins in infant/toddler foods and breakfast cereals in the US retail market. Food Addit Contam Part B Surveill 11(3):183–190

    CAS  Google Scholar 

  • Zhang L, Li L, Xu J, Pan M-H, Sun S-C (2019) HT-2 toxin exposure induces mitochondria dysfunction and DNA damage during mouse early embryo development. Reprod Toxicol 85:104–109

    CAS  Google Scholar 

  • Zinedine A, Fernández-Franzón M, Mañes J, Manyes L (2017) Multi-mycotoxin contamination of couscous semolina commercialized in Morocco. Food Chem 214:440–446

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R & D Program (2016YFD0501207; 2016YFD0501009; 2018YFC1603005), National Natural Science Foundation of China (31972741; 31572576; 31572575), China Postdoctoral Science Foundation (2016T90477), PAPD, the Fundamental Research Funds for the Central Universities (2662020DKPY020), and Excellence Project UHK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenda Wu or Xu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Qin, Z., Kuca, K. et al. An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Arch Toxicol 94, 3645–3669 (2020). https://doi.org/10.1007/s00204-020-02899-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-020-02899-9

Keywords

Navigation