Skip to main content
Log in

Sharp-Interface Nematic–Isotropic Phase Transitions without Flow

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

We derive a supplemental evolution equation for an interface between the nematic and isotropic phases of a liquid crystal when flow is neglected. Our approach is based on the notion of configurational force. As an application, we study the behavior of a spherical isotropic drop surrounded by a radially oriented nematic phase: our supplemental evolution equation then reduces to a simple ordinary differential equation admitting a closed-form solution. In addition to describing many features of isotropic-to-nematic phase transitions, this simplified model yields insight concerning the occurrence and stability of isotropic cores for hedgehog defects in liquid crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armitage, D., Price, F.P.: Supercooling and nucleation in liquid crystals. Molecular Crystals and Liquid Crystals 44, 33–44 (1978)

    Google Scholar 

  2. Anderson, D.R., Carlson, D.E., Fried, E.: A continuum-mechanical theory for nematic elastomers. J. Elasticity 56, 33–58 (1999)

    Article  MathSciNet  Google Scholar 

  3. Cermelli, P., Fried, E.: The evolution equation for a disclination in a nematic liquid crystal. Proceedings of the Royal Society of London A 458, 1–20 (2002)

    Article  MATH  Google Scholar 

  4. Cheong, A-G., Rey, A.D.: Cahn–Hoffman capillarity vector thermodynamics for curved liquid crystal interfaces with application to fiber instabilities. J. Chemical Physics 117, 5062–5071 (2002)

    Article  Google Scholar 

  5. Derzhanski, A.I., Petrov, A.G.: Flexoelectricity in nematic liquid crystals. Acta Physica Polonica A 55, 747–767 (1979)

    Google Scholar 

  6. de Gennes, P.G.: Short range order effects in the isotropic phase of nematics and cholesterics. Molecular Crystals and Liquid Crystals 12, 193–214 (1971)

    Google Scholar 

  7. Ericksen, J.L.: Conservation laws for liquid crystals. Transactions of the Society of Rheology 5, 23–34 (1961)

    Article  Google Scholar 

  8. Ericksen, J.L.: Inequalities in liquid crystal theory. Physics of Fluids 9, 1205–1207 (1966)

    Google Scholar 

  9. Eshelby, J.D.: The force on a disclination in a liquid crystal. Philosphical Magazine A 42, 359–367 (1980)

    Google Scholar 

  10. Frank, F.C.: On the theory of liquid crystals. Discussions of the Faraday Society 25, 19–28 (1958)

    Article  MATH  Google Scholar 

  11. Gurtin, M.E.: The nature of configurational forces. Archive for Rational Mechanics and Analysis 131, 67–100 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Gurtin, M. E.: Configurational Forces as Basic Concepts of Continuum Physics. New York: Springer, 2000

  13. Gurtin, M.E., Jabbour, M.E.: Interface evolution in three dimensions with curvature-dependent energy and surface diffusion: Interface-controlled evolution, phase transitions, epitaxial growth of elastic films. Archive for Rational Mechanics and Analyis 163, 171–208 (2002)

    Article  MATH  Google Scholar 

  14. Gurtin, M.E., Struthers, A.: Multiphase thermomechanics with interfacial structure 3. Evolving phase boundaries in the presence of bulk deformation. Archive for Rational Mechanics and Analysis 112, 97–160 (1990)

    MATH  Google Scholar 

  15. Gurtin, M.E., Struthers, A., Williams, W.O.: A transport theorem for moving interfaces. Quarterly of Appl. Math. 47, 773–777 (1989)

    MathSciNet  MATH  Google Scholar 

  16. Langer, J.S.: Instabilities and pattern formation in cyrstal growth. Reviews of Modern Physics 52, 1–28 (1980)

    Article  Google Scholar 

  17. Leslie, F.M.: Some constitutive equations for liquid crystals. Archive for Rational Mechanics and Analysis 28, 265–283 (1968)

    Article  MATH  Google Scholar 

  18. Maugin, G.A., Trimarco, C.: On material and physical forces in liquid crystals. Int. J. Eng. Sci. 33, 1163–1678 (1995)

    Article  Google Scholar 

  19. Oseen, W.C.: The theory of liquid crystals. Transactions of the Faraday Society 29, 883–899 (1933)

    Article  MATH  Google Scholar 

  20. Ostner, W., Chan, S.-K., Kahlweit, M.: On the transformation of a liquid crystal (p-Azoxydianisole) from its isotropic to its nematic state. Berichte der Bunsen-Gesellschaft für physicalische Chemie 77, 1122–1126 (1973)

    Google Scholar 

  21. Oswald, P., Bechoeffer, J., Libchaber, A.: Instabilities of a moving nematic-isotropic interface. Physical Rev. Lett. 58, 2318–2321 (1987)

    Article  Google Scholar 

  22. Poniewierski, A.: Shape of the nematic-isotropic interface in conditions of partial wetting. Liquid Crystals 27, 1369–1380 (2000)

    Article  Google Scholar 

  23. Rapini, A., Papoular, M.: Distorsion d’une lamelle nématique sous champ magnétique. Conditions d’ancrage aux parois. J. de Physique (Paris) Colloque C4 30, 54–56 (1969)

    Google Scholar 

  24. Rey, A.D.: Young–Laplace equation for liquid crystal interfaces. J. Chemical Physics 113, 10820–10822 (2000a)

    Google Scholar 

  25. Rey, A.D.: Viscoelastic theory for nematic interfaces. Physical Review E 61, 1540–1549 (2000b)

  26. Rey, A.D.: Theory of interfacial dynamics of nematic polymers. Rheologica Acta 39, 13–19 (2000c)

  27. Rey, A.D.: Mechanical theory for nematic thin films. Langmuir 17, 1922–1927 (2001)

    Article  Google Scholar 

  28. Stephen, M.J., Straley, J.P.: Physics of liquid crystals. Reviews of Modern Physics 46, 617–704 (1974)

    Article  Google Scholar 

  29. Zöcher, H.: The effect of a magnetic field on the nematic state. Transactions of the Faraday Society 29, 945–957 (1933)

    Article  Google Scholar 

Download references

Acknowledgments.

P.C. was supported by the Italian M.I.U.R. project “Modelli matematici per la scienza dei materiali” during the completion of this work. E.F. and M.E.G. were supported by the National Science Foundation and the Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morton E. Gurtin.

Additional information

Communicated by the Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cermelli, P., Fried, E. & Gurtin, M. Sharp-Interface Nematic–Isotropic Phase Transitions without Flow. Arch. Rational Mech. Anal. 174, 151–178 (2004). https://doi.org/10.1007/s00205-004-0334-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-004-0334-5

Keywords

Navigation