Skip to main content
Log in

Poincaré’s Variational Problem in Potential Theory

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

One of the earliest attempts to rigorously prove the solvability of Dirichlet’s boundary value problem was based on seeking the solution in the form of a “potential of double layer”, and this leads to an integral equation whose kernel is (in general) both singular and non-symmetric. C. Neumann succeeded with this approach for smoothly bounded convex domains, and H. Poincaré, by a tremendous tour de force, showed how to push through the analysis for domains with sufficiently smooth boundaries but no hypothesis of convexity. In this work he was (according to his own account) guided by consideration of a variational problem involving the partition of energy of an electrostatic field induced by charges placed on the boundary of a domain, more precisely the charge distributions which render stationary the energy of the field inside the domain divided by the energy of the field outside the domain. Unfortunately, a rigorous treatment of this problem was not possible with the tools available at that time (as Poincaré was well aware). So far as we know, the only one to propose a rigorous treatment of Poincaré’s problem was T. Carleman (in the two-dimensional case) in his doctoral dissertation. Thanks to later developments (especially concerning Sobolev spaces, and spectral theory of operators on Hilbert space) we can now give a complete, general and rigorous account of Poincaré’s variational problem, and that is the main object of the present paper. As a by-product, we refine some technical aspects in the theory of symmetrizable operators and prove in any number of dimensions the basic properties of the analogue of the planar Bergman–Schiffer singular integral equation. We interpret Poincaré’s variational principle as a non-selfadjoint eigenvalue problem for the angle operator between two distinct pairs of subspaces of potentials. We also prove a series of novel spectral analysis facts (some of them conjectured by Poincaré) related to the Poincaré–Neumann integral operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlfors L.V. (1952) Remarks on the Neumann–Poincaré integral equation. Pacific J. Math. 3, 271–280

    Article  MATH  Google Scholar 

  • Bergman S.: The Kernel Function and Conformal Mapping 2nd ed. Mathematical Surveys. 5, Providence, R.I., American Mathematical Society, 1970

  • Bergman S., Schiffer M. (1951) Kernel functions and conformal mapping. Compos. Math. 8, 205–249

    MathSciNet  MATH  Google Scholar 

  • Burkhardt H., Meyer W.F. Potentialtheorie (Theorie der Laplace-Poissonschen) Differentialgleichung. Encyklopädie der Mathematischen Wissenschaften- Analysis, vol. II A 7b, Teubner, Leipzig, 1909–1921; pp. 464–503

  • Carleman T., (1916) Über das Neumann–Poincarésche Problem für ein Gebiet mit Ecken. Almquist and Wiksells, Uppsala

    MATH  Google Scholar 

  • Deny J. (1950) Sur la définition de l’énergie en théorie du potentiel. Ann. Inst. Fourier 2, 83–99

    Article  MathSciNet  MATH  Google Scholar 

  • Dunford N., Schwartz J.T.: Linear Operators, Vol. I, II. Interscience, New York, 1958, 1963

  • Ebenfelt P., Khavinson D., Shapiro H.S. (2001) An inverse problem for the double layer potential. Comput. Methods Funct. Theory 1, 387–401

    Article  MathSciNet  MATH  Google Scholar 

  • Ebenfelt P., Khavinson D., Shapiro H.S. (2002) A free boundary problem related to single-layer potentials. Ann. Acad. Sci. Fenn. Math. 27, 21–46

    MathSciNet  MATH  Google Scholar 

  • Fredholm I. (1903) Sur une classe d’équations fonctionnelles. Acta Math. 27, 365–390

    Article  MathSciNet  MATH  Google Scholar 

  • Friedrichs K.O., Lax P.D. (1967) On symmetrizable differential operators. Proc. Sympos. Pure Math., Amer. Math. Soc. Providence, R.I. 10, 128–137

    Article  MathSciNet  MATH  Google Scholar 

  • Gaier D. (1962) Über die Symmetrisierbarkeit des Neumannschen Kerns. Z. Angew. Math. Mech. 42, 569–570

    Article  MATH  Google Scholar 

  • Gohberg I.C., Krein M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space. Amer. Math. Soc. Translations Vol. 18, Amer. Math. Soc., Providence, R.I., 1969

  • Günther N.M., (1957) Die Potentialtheorie und ihre Anwendung auf Grundaufgaben der Mathematischen Physik. Teubner, Leipzig

    MATH  Google Scholar 

  • Hellinger E., Toeplitz O.: Integralgleichungen und Gleichungen mit vielen unendlich Unbekanten. Encyklopädie der Mathematischen Wissenschaften- Analysis, vol. II C 13, Teubner, Leipzig, 1909–1921; reprint in book format by Chelsea, New York, NY, 1953

  • Hilbert D.: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Leipzig, 1912 ; reprint Chelsea, New York, 1953

  • Kellogg O.D., (1929) Foundations of Potential Theory. J. Springer, Berlin

    Book  MATH  Google Scholar 

  • Korn A., (1899) Lehrbuch der Potentialtheorie 2 vol. Dümmler Verlag, Berlin

    MATH  Google Scholar 

  • Korn A.: Eine Theorie der linearen Integralgleichungen mit unsymmetrischen kernen. Tohoku J. Math. 1, 159–186 (1911-1912); part II, ibidem, 2, 117–136 (1912-1913)

  • Korn A. (1913) Über die erste und zweite Randwertaufgabe der Potentialtheorie. Rend. Circ. Matem. Palermo 35, 317–323

    Article  MATH  Google Scholar 

  • Korn A.: Über die Anwendung zur Lösung von lineare Integralgleichungen mit unsymmetrischen Kernen. Arch. Math. 25, 148–173 (1916); part II, ibidem, 27, 97–120 (1918)

  • Krein M.G.: Compact linear operators on functional spaces with two norms. (Ukrainian), Sbirnik Praz. Inst. Mat. Akad. Nauk Ukrainsk SSR 9, 104–129 (1947); English translation in: Integral Equations Operator Theory 30, 140–162 (1998)

  • Kupradze V.D. (ed), (1979) Three Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North Holland, Amsterdam

    Google Scholar 

  • Lalesco T., (1912) Introduction à la Théorie des Équations Intégrales. Hermann, Paris

    MATH  Google Scholar 

  • Lalesco T. (1917) Les classes de noyaux symmetrisables. Bull. Soc. Math. France 45, 144–149

    Article  MathSciNet  MATH  Google Scholar 

  • Landkof N.S.: Foundations of Modern Potential Theory. Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer, Berlin, 1972

  • Lax P. (1956) Symmetrizable linear transformations. Comm. Pure Appl. Math. 7, 633–647

    Article  MathSciNet  MATH  Google Scholar 

  • Lichtenstein L.: Neuere Entwicklung der Potential-Theorie. Konforme Abbildung. Encyklopädie der Mathematischen Wissenschaften- Analysis, vol. II C 3, Teubner, Leipzig, pp. 177–378, 1909-1921

  • Lions J.L., Magenes E., (1972) Non-homogeneous Boundary Value Problems and Applications Vol I. Springer, Berlin

    Book  MATH  Google Scholar 

  • Marty J. (1910) Valeurs singulières d’une équation de Fredholm. C.R. Math. Acad. Sci. Paris 150, 1499–1502

    MATH  Google Scholar 

  • Maz’ya V.G.: Boundary integral equations. Analysis IV. Linear and boundary integral equations (V.G. Maz’ya and S. M. Nikol’skii eds.). Encycl. Math. Sci. vol. 27, Springer, Berlin, pp. 127–222, 1991

  • Mercer J. (1920) Symmetrisable functions and their expansion in terms of biorthogonal functions. Proc. Royal Soc. (A) 97: 401–413

    Article  ADS  MATH  Google Scholar 

  • Neumann C. \"Uber die Methode des arithmetischen Mittels, Erste and zweite Abhandlung, Leipzig 1887/88, in Abh. d. Kgl. Sächs Ges. d. Wiss., IX and XIII.

  • Pell A.J. (1911) Applications of biorthogonal systems of functions to the theory of integral equations. Trans. Amer. Math. Soc. 12, 165–180

    Article  MathSciNet  MATH  Google Scholar 

  • Plemelj J., (1911) Potentialtheoretische Untersuchungen. Teubner, Leipzig

    MATH  Google Scholar 

  • Poincaré H. (1897) La méthode de Neumann et le problème de Dirichlet. Acta Math. 20, 59–152

    Article  MathSciNet  MATH  Google Scholar 

  • Poincaré H., (1899) Théorie du Potentiel Newtonien. Carré et Náud, Paris

    MATH  Google Scholar 

  • Radon J.: Über lineare Funktionaltransformationen und Funktionalgleichungen. Sitz. Akad. Wiss. Wien, Band 12, Heft 7, 1083–1121 (1919)

  • Radon J. (1919) Über die randwertaufgaben beim logarithmische potential. Sitz. Akad. Wiss. Wien, Band 12, Heft 7: 1123–1167

    MATH  Google Scholar 

  • Reid W.T. (1951) Symmetrizable completely continuous linear transformations in Hilbert space. Duke Math. J. 18, 41–56

    Article  MathSciNet  MATH  Google Scholar 

  • Riesz F., Sz.-Nagy B., (1955) Functional Analysis. Frederik Ungar, New York

    MATH  Google Scholar 

  • Shapiro H.S.: The Schwarz Function and its Generalization to Higher Dimensions. University of Arkansas Lecture Notes in the Mathematical Sciences 9. A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1992

  • Schiffer M. (1957) The Fredholm eigenvalues of plane domains. Pacific J. Math. 7, 1187–1225

    Article  MathSciNet  MATH  Google Scholar 

  • Schiffer M. (1981) Fredholm eigenvalues and Grunsky matrices. Ann. Polon. Math. 39, 149– 164

    Article  MathSciNet  Google Scholar 

  • Schwarz H.A.: Gesammelte Mathematische Abhandunglen 2 vols., Berlin 1890

  • Sobolev S.L., (1964) Partial Differential Equations of Mathematical Physics. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Springer G (1964) Fredholm eigenvalues and quasi-conformal mapping. Acta Math. 111, 121–141

    Article  MathSciNet  MATH  Google Scholar 

  • Zaanen A.C., (1953) Linear Analysis. Interscience, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Putinar.

Additional information

Communicated by F. Otto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khavinson, D., Putinar, M. & Shapiro, H.S. Poincaré’s Variational Problem in Potential Theory. Arch Rational Mech Anal 185, 143–184 (2007). https://doi.org/10.1007/s00205-006-0045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-006-0045-1

Keywords

Navigation