Skip to main content
Log in

On the Nernst–Planck–Navier–Stokes system

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider ionic electrodiffusion in fluids, described by the Nernst–Planck–Navier–Stokes system in bounded domains, in two dimensions, with Dirichlet boundary conditions for the Navier–Stokes and Poisson equations, and blocking (vanishing normal flux) or selective (Dirichlet) boundary conditions for the ionic concentrations. We prove global existence and stability results for large data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biler, P., Dolbeault, J.: Long time behavior of solutions to Nernst-Planck and Debye-Hckel drift-diffusion systems. Ann. H. Poincare 1, 461–472 (2000)

    Article  MATH  Google Scholar 

  2. Bothe, D., Fischer, A., Saal, J.: Global well-posedness and stability of electrokinetic flows. SIAM J. Math. Anal. 46(2), 1263–1316 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezis, H., Merle, F.: Uniform estimates and blow-up for solutions of \(-\Delta u = v(x)e^u\) in two dimensions. Commun. PDE 16, 1223–1253 (1991)

    Article  MATH  Google Scholar 

  4. Choi, Y.S., Lui, R.: Multi-dimensional electrochemistry model. Arch. Ration. Mech. Anal. 130, 315–342 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Constantin, P., Foias, C.: Navier-Stokes Equations. University of Chicago Press, Chicago (1988)

    MATH  Google Scholar 

  6. Davidson, S.M., Wessling, M., Mani, A.: On the dynamical regimes of pattern-accelerated electroconvection. Sci. Rep. 6, 22505 (2016). https://doi.org/10.1038/srep22505

    Article  ADS  Google Scholar 

  7. Fischer,A., Saal, J.:Globalweak solutions in three space dimensions for electrokinetic flow processes. J. Evol. Equ. 17(1), 309–333 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedman, A., Tintarev, K.: Boundary asymptotics for solutions of the Poisson-Boltzmann equation. J. Differ. Equ. 69, 15–38 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Gajewski, H., Groger, K.: Reaction-diffusion processes of electrically charged species. Math. Nachr. 177, 109–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential equations of Second Order Grundlehren der mathematischen Wissenschaften, vol. 224, 2nd edn, Springer, Berlin, 1983

  11. Grubb, G., Solonnikov, V.: Boundary value problems for nonstationary Navier-Stokes equations treated by pseudo-differential methods. Math. Scand. 69, 217–290 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gupta, A., Stone, H.: Consequences of asymmetry in electrolyte valence on diffuse charge dynamics, preprint 2018

  13. Jerome, J.W.: Analytical approaches to charge transport in a moving medium. Transp. Theory Stat. Phys. 31, 333–366 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Jerome, J.W., Sacco, R.: Global weak solutions for an incompressible charged fluid with multi-scale couplings: initial-boundary-value problem. Nonlinear Anal. Theory Models Appl. 71(12), e2487–e2497 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Keller, J.B.: Electrohydrodynamics I. The equilibrium of a charged gas in a container. J. Ration. Mech. Anal. 5, 715–724 (1956)

  16. Rubinstein, I.: Electro-Diffusion of Ions. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  17. Rubinstein, S.M., Manukyan, G., Staicu, A., Rubinstein, I., Zaltzman, B., Lammertink, R.G.H., Mugele, F., Wessling, M.: Direct observation of a nonequilibrium electro-osmotic instability. Phys. Rev. Lett. 101, 236101–236105 (2008)

    Article  ADS  Google Scholar 

  18. Rubinstein, I., Zaltzman, B.: Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E 62, 2238–2251 (2000)

    Article  ADS  Google Scholar 

  19. Ryham, R.: Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electrohydrodynamics.2009 arXiv:0910.4973v1

  20. Schmuck, M.: Analysis of the Navier-Stokes-Nernst-Planck-Poisson system. Math. Models Methods Appl. 19, 993–1014 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Solonnikov, V.A.: Estimates for solutions of nonstationary Navier-Stokes equations. J. Sov. Math. 8, 213–317 (1977)

    Google Scholar 

  22. Zaltzman, B., Rubinstein, I.: Electro-osmotic slip and electroconvective instability. J. Fluid Mech. 579, 173–226 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for helpful suggestions to improve the presentation. The work of PC was partially supported by NSF Grant DMS-1713985.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Constantin.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constantin, P., Ignatova, M. On the Nernst–Planck–Navier–Stokes system. Arch Rational Mech Anal 232, 1379–1428 (2019). https://doi.org/10.1007/s00205-018-01345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-01345-6

Navigation