Skip to main content
Log in

Stationary Solutions and Nonuniqueness of Weak Solutions for the Navier–Stokes Equations in High Dimensions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Consider the unforced incompressible homogeneous Navier–Stokes equations on the d-torus \({\mathbb{T}^d}\) where \({d \geq 4}\) is the space dimension. It is shown that there exist nontrivial steady-state weak solutions \({u \in L^{2} (\mathbb{T}^d)}\). The result implies the nonuniqueness of finite energy weak solutions for the Navier–Stokes equations in dimensions \({d \geq 4}\); it also suggests that the uniqueness of forced stationary problem is likely to fail however smooth the given force is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buckmaster, T., De Lellis, C., Isett, P., Székelyhidi, L. Jr.: Anomalous dissipation for \(1/5\)-Hölder Euler flows. Ann. Math. (2), 182(1), 127–172, 2015

  2. Buckmaster, T., De Lellis, C., Székelyhidi Jr., L.: Dissipative Euler flows with Onsager-critical spatial regularity. Commun. Pure Appl. Math. 69(9), 1613–1670 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buckmaster, T., De Lellis, C., Szkelyhidi, L. Jr., Vicol, V.: Onsager's conjecture for admissible weak solutions. Commun. Pure Appl. Math., 72(2), 229–274, 2018

  4. Buckmaster, T., Shkoller, S., Vicol, V.: Nonuniqueness of weak solutions to the SQG equation. Commun. Pure Appl. Math., 2018. to appear

  5. Buckmaster, T., Vicol, V.: Nonuniqueness of weak solutions to the Navier–Stokes equation. arXiv:1709.10033, 2017

  6. Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager's conjecture for the Euler equations. Nonlinearity 21(6), 1233–1252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Conti, S., De Lellis, C., Székelyhidi, L. Jr.: \(h\)-principle and rigidity for \(C^{1,\alpha }\) isometric embeddings. In: sc Holden, H., Karlsen, K. (eds.) Nonlinear Partial Differential Equations, Volume 7 of Abel Symp., pp. 83–116. Springer, Heidelberg, 2012

  8. Constantin, P., Weinan, E., Titi, E.S.: Onsager's conjecture on the energy conservation for solutions of Euler's equation. Commun. Math. Phys. 165(1), 207–209 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Cheskidov, A., Friedlander, S., Shvydkoy, R.: On the energy equality for weak solutions of the 3D Navier-Stokes equations. In: Rannacher, R., Sequeira, A. (eds.) Advances in Mathematical Fluid Mechanics, pp. 171–175. Springer, Berlin (2010)

    Chapter  Google Scholar 

  10. Cheskidov, A., Luo, X.: Energy equality for the Navier–Stokes equations in weak-in-time Onsager spaces. arXiv:1802.05785, 2018

  11. Colombo, M., De Lellis, C., De Rosa, L.: Ill-posedness of Leray solutions for the ipodissipative Navier–Stokes equations. arXiv:1708.05666, 2017

  12. Cheskidov, A., Shvydkoy, R.: Ill-posedness of the basic equations of fluid dynamics in Besov spaces. Proc. Am. Math. Soc. 138(3), 1059–1067 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheskidov, A., Shvydkoy, R.: The regularity of weak solutions of the 3D Navier-Stokes equations in \(B^{-1}_{\infty,\infty }\). Arch. Ration. Mech. Anal. 195(1), 159–169 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheskidov, A., Shvydkoy, R.: Euler equations and turbulence: analytical approach to intermittency. SIAM J. Math. Anal. 46(1), 353–374 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cao, C., Titi, E.S.: Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor. Arch. Ration. Mech. Anal. 202(3), 919–932 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chemin, J.-Y., Zhang, P.: On the critical one component regularity for 3-D Navier–Stokes systems. Ann. Sci. Éc. Norm. Supér. (4), 49(1), 131–167, 2016

  17. De Lellis, C., Székelyhidi, L. Jr.: The Euler equations as a differential inclusion. Ann. Math. (2), 170(3), 1417–1436, 2009

  18. De Lellis, C., Székelyhidi Jr., L.: Dissipative continuous Euler flows. Invent. Math. 193(2), 377–407 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. De Lellis, C., Székelyhidi Jr., L.: Dissipative Euler flows and Onsager's conjecture. J. Eur. Math. Soc. (JEMS) 16(7), 1467–1505 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. De Lellis, C., Székelyhidi, L. Jr.: High dimensionality and h-principle in PDE. Bull. Am. Math. Soc. (N.S.), 54(2), 247–282, 2017

  21. Daneri, S., Székelyhidi Jr., L.: Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 224(2), 471–514 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Escauriaza, L., Seregin, G.A., Šverák, V.: \(L_{3,\infty }\)-solutions of Navier–Stokes equations and backward uniqueness. Uspekhi Mat. Nauk, 58(2(350)), 3–44, 2003

  23. Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer. Phys. D, 78(3-4), 222–240, 1994

  24. Frster, C., Szkelyhidi, L. Jr.: Piecewise constant subsolutions for the muskat problem. arXiv:1709.05155, 2017

  25. Frehse, J., Růžička, M.: On the regularity of the stationary Navier–Stokes equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 21(1), 63–95, 1994

  26. Frehse, J., Růžička, M.: Existence of regular solutions to the stationary Navier-Stokes equations. Math. Ann. 302(4), 699–717 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Frehse, J., Růžička, M.: Regular solutions to the steady Navier-Stokes equations. In: Sequeira, A. (eds) Navier-Stokes Equations and Related Nonlinear Problems (Funchal. 1994), pp. 131–139. Plenum, New York (1995)

    Chapter  MATH  Google Scholar 

  28. Frisch, U.: Turbulence. Cambridge University Press, Cambridge, 1995. The legacy of A. N. Kolmogorov

  29. Farwig, R., Sohr, H.: Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier–Stokes equations in \({\mathbb{R} \it }^{n}\). Czechoslov. Math. J., 59(134)(1), 61–79, 2009

  30. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Vol. II, Volume 39 of Springer Tracts in Natural Philosophy. Springer, New York, 1994. Nonlinear steady problems

  31. Galdi, G.P.: An introduction to the Navier–Stokes initial-boundary value problem. In: Galdi, G.P., Heywood, J.G., Rannacher, R. (eds.) Fundamental Directions in Mathematical Fluid mechanics, Adv. Math. Fluid Mech., pp. 1–70. Birkhäuser, Basel, 2000

  32. Gerhardt, C.: Stationary solutions to the Navier-Stokes equations in dimension four. Math. Z. 165(2), 193–197 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Germain, P.: Multipliers, paramultipliers, and weak-strong uniqueness for the Navier-Stokes equations. J. Differ. Equ. 226(2), 373–428 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Gallagher, I., Koch, G.S., Planchon, F.: Blow-up of critical Besov norms at a potential Navier-Stokes singularity. Commun. Math. Phys. 343(1), 39–82 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Galdi, G.P., Simader, C.G., Sohr, H.: A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in \(W^{-1/q, q}\). Math. Ann. 331(1), 41–74 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Guillod, J., Šverák, V.: Numerical investigations of non-uniqueness for the Navier–Stokes initial value problem in borderline spaces. arXiv:1704.00560, 2017

  37. Hopf, E.: ber die anfangswertaufgabe fr die hydrodynamischen grundgleichungen. erhard schmidt zu seinem 75. geburtstag gewidmet. Math. Nachr., 4(1-6), 213–231, 1951

  38. Isett, P., Oh, S.-J.: On nonperiodic Euler flows with Hölder regularity. Arch. Ration. Mech. Anal. 221(2), 725–804 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Isett, P., Oh, S.-J.: On the kinetic energy profile of Hölder continuous Euler flows. Ann. Inst. H. Poincaré Anal. Non Linéaire, 34(3), 711–730, 2017

  40. Isett, P.: A proof of onsager's conjecture. arXiv:1608.08301, 2016

  41. Isett, P., Vicol, V.: Hölder continuous solutions of active scalar equations. Ann. PDE, 1(1), Art. 2, 77, 2015

  42. Jia, H., Šverák, V.: Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions. Invent. Math. 196(1), 233–265 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Jia, H., Šverák, V.: Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space? J. Funct. Anal. 268(12), 3734–3766 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kim, H.: Existence and regularity of very weak solutions of the stationary Navier-Stokes equations. Arch. Ration. Mech. Anal. 193(1), 117–152 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ladayzhenskaya, O.: On uniqueness and smoothness of generalized solutions to the Navier-Stokes equations. Zapiski Nauchnykh Seminarov POMI 5, 169–185 (1967)

    MathSciNet  Google Scholar 

  46. Leray, J.: Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lions, P.-L., Masmoudi, N.: Uniqueness of mild solutions of the Navier-Stokes system in \(L^N\). Commun. Partial Differ. Equ. 26(11–12), 2211–2226 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  48. Mandelbrot, B.: Intermittent turbulence and fractal dimension: kurtosis and the spectral exponent \(5/3+B\). In: Temam, R. (eds.) Turbulence and Navier–Stokes Equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975). Lecture Notes in Math., vol. 565, pp. 121–145. Springer, Berlin, 1976

  49. Modena, S., Szkelyhidi, L. Jr.: Non-uniqueness for the transport equation with sobolev vector fields. arXiv:1712.03867, 2017

  50. Modena, S., Szkelyhidi, L. Jr.: Non-renormalized solutions to the continuity equation. arXiv:1806.09145, 2018

  51. Nash, J.: \(C^1\) isometric imbeddings. Ann. Math. 2(60), 383–396 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  52. Prodi, G.: Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura ed Appl. 48(1), 173–182 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  53. Scheffer, V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3(4), 343–401 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  54. Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal. 9, 187–195 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Shinbrot, M.: The energy equation for the Navier-Stokes system. SIAM J. Math. Anal. 5, 948–954 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Shnirelman, A.: On the nonuniqueness of weak solution of the Euler equation. Commun. Pure Appl. Math. 50(12), 1261–1286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  57. Struwe, M.: Regular solutions of the stationary Navier-Stokes equations on \({{\bf R}}^{5}\). Math. Ann. 302(4), 719–741 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  58. Szekelyhidi, L. Jr.: From isometric embeddings to turbulence. In: HCDTE Lecture Notes. Part II. Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations, Volume 7 of AIMS Ser. Appl. Math., pp. 63. Am. Inst. Math. Sci. (AIMS), Springfield, 2013

  59. Tao, T.: 255B, Notes 2: Onsagers conjecture. 2019. https://terrytao.wordpress.com/2019/01/08/255b-notes-2-onsagers-conjecture/. Accessed 8 Jan 2019

Download references

Acknowledgements

The author is grateful to his advisor Alexey Cheskidov formany stimulating discussions and for valuable comments after reading earlier versions of the manuscript. The author is partially supported by the NSF grant DMS 1517583 through his advisor Alexey Cheskidov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyutao Luo.

Additional information

Communicated by P. Constantin

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X. Stationary Solutions and Nonuniqueness of Weak Solutions for the Navier–Stokes Equations in High Dimensions. Arch Rational Mech Anal 233, 701–747 (2019). https://doi.org/10.1007/s00205-019-01366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01366-9

Navigation