Skip to main content
Log in

Nonlinear Hyperbolic Waves in Relativistic Gases of Massive Particles with Synge Energy

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this article, we study some fundamental properties of nonlinear waves and the Riemann problem of Euler’s relativistic system when the constitutive equation for energy is that of Synge for a monatomic rarefied gas or its generalization for diatomic gas. These constitutive equations are the only ones compatible with the relativistic kinetic theory for massive particles in the whole range from the classical to the ultra-relativistic regime. They involve modified Bessel functions of the second kind and this makes Euler’s relativistic system rather complex. Based on delicate estimates of the Bessel functions, we prove: (i) a limit on the speed of sound of \(1{/}\sqrt{3}\) times the speed of light (which a fortiori implies subluminality, that is causality), (ii) the genuine non-linearity of the acoustic waves, (iii) the compatibility of Rankine–Hugoniot relations with the second law of thermodynamics (entropy growth through all Lax shocks), and (iv) the unique resolvability of the initial value problem of Riemann (if we include the possibility of vacuum as in the non-relativistic context).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. All thermodynamical variables are scalars, that is Lorentzian invariants.

References

  1. Anile, A.M.: Relativistic Fluids and Magneto-fluids. Cambridge University Press, Cambridge 1989

    Google Scholar 

  2. Cercignani, C., Kremer, G.M.: The Relativistic Boltzmann Equation: Theory and Applications. Birkhäuser, Basel 2002

    Google Scholar 

  3. de Groot, S.R., van Leeuwen, W.A., van Weert, Ch.G.: Relativistic Kinetic Theory. North-Holland Publishing Co., Amsterdam 1980

  4. Taub, A.H.: Relativistic Hydrodynamics, Relativity Theory and Astrophysics 1. Relativity and Cosmology. (Ed. Ehlers J.) American Mathematical Society, Providence, 170–193, 1967

  5. Synge, J.L.: The Relativistic Gas. North Holland, Amsterdam 1957

    Google Scholar 

  6. Bressan, A.: Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem. Oxford University Press, Oxford 2000

    Google Scholar 

  7. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 4th edn. Springer, Berlin 2016

    Google Scholar 

  8. Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math. 18, 697–715, 1965

    MathSciNet  Google Scholar 

  9. Smoller, J.: Shock Waves and Reaction-Diffusion Equations, 2nd edn. Springer, Berlin 1994

    Google Scholar 

  10. Glimm, J., Lax, P.D.: Decay of solutions of systems of nonlinear hyperbolic conservation laws. Mem. Am. Math. Soc. 101, 1–112, 1970

    MathSciNet  Google Scholar 

  11. Nishida, T.: Global solution for an initial boundary value problem of a quasilinear hyperbolic system. Proc. Jpn. Acad. 44(7), 642–646, 1968

    MathSciNet  Google Scholar 

  12. Nicolaenko, B., Thurber, J.K.: Weak shock and bifurcating solutions of the non-linear Boltzmann equation. J. Mech. 14(2), 305–338, 1975

    MathSciNet  Google Scholar 

  13. Caflish, R.E., Nicolaenko, B.: Shock profile solutions of the Boltzmann equation. Commun. Math. Phys. 86(2), 161–194, 1982

    ADS  MathSciNet  Google Scholar 

  14. Yu, S.H.: Hydrodynamic limits with shock waves of the Boltzmann equations. Commun. Pure Appl. Math 58(3), 409–443, 2005

    MathSciNet  Google Scholar 

  15. Huang, F.M., Wang, Y., Yang, T.: Hydrodynamic limit of the Boltzmann equation with contact discontinuities. Commun. Math. Phys. 295(2), 293–326, 2010

    ADS  MathSciNet  Google Scholar 

  16. Huang, F.M., Wang, Y., Yang, T.: The limit of the Boltzmann equation to the Euler equations for Riemann problems. SIAM J. Math. Anal. 45(3), 1741–1811, 2013

    MathSciNet  Google Scholar 

  17. Liu, T.P., Yang, T., Yu, S.H., Zhao, H.J.: Nonlinear stability of rarefaction waves for the Boltzmann equation. Arch. Rational Mech. Anal. 181(2), 333–371, 2006

    ADS  MathSciNet  Google Scholar 

  18. Ukai, S., Yang, T., Yu, S.H.: Nonlinear boundary layers of the Boltzmann equation: I. Existence. Commun. Math. Phys. 236(3), 373–393, 2003

  19. Ukai, S., Yang, T., Yu, S.H.: Nonlinear stability of boundary layers of the Boltzmann equation. I. The case \({\mathscr {M}}^{\infty } \le -1\). Commun. Math. Phys. 244(1), 99–109, 2004

    ADS  MathSciNet  Google Scholar 

  20. Xin, Z.P., Yang, T., Yu, H.J.: The Boltzmann equation with soft potentials near a local Maxwellian. Arch. Ration. Mech. Anal. 206(1), 239–296, 2012

    MathSciNet  Google Scholar 

  21. Taub, A.H.: Relativistic Rankine-Hugoniot equations. Phys. Rev. 74(3), 328–334, 1948

    ADS  MathSciNet  Google Scholar 

  22. Smoller, J., Temple, B.: Global solutions of the relativistic Euler equations. Commun. Math. Phys. 156(1), 67–99, 1993

    ADS  MathSciNet  Google Scholar 

  23. Wissman, B.D.: Global solutions to the ultra-relativistic Euler equations. Commun. Math. Phys. 306(3), 831–851, 2011

    ADS  MathSciNet  Google Scholar 

  24. Chen, J.: Conservation laws for the relativistic p-system. Commun. Partial Differ. Eqn. 20(9–10), 1605–1646, 1995

    MathSciNet  Google Scholar 

  25. Chen, J.: Conservation laws for relativistic fluid dynamics. Arch. Ration. Mech. Anal. 139(4), 377–398, 1997

    MathSciNet  Google Scholar 

  26. Makino, T., Ukai, S.: Local smooth solutions of the relativistic Euler equation. J. Math. Kyoto Univ. 35(1), 105–114, 1995

    MathSciNet  Google Scholar 

  27. Makino, T., Ukai, S.: Local smooth solutions of the relativistic Euler equation. II. Kodai Math. J. 18(2), 365–375, 1995

    MathSciNet  Google Scholar 

  28. Lefloch, P., Ukai, S.: A symmetrization of the relativistic Euler equations with several spatial variables. Kinet. Relat. Modles 2(2), 275–292, 2009

    MathSciNet  Google Scholar 

  29. Pan, R.H., Smoller, J.: Blow up of smooth solutions for relativistic Euler equations. Commun. Math. Phys. 262(3), 729–755, 2006

    ADS  Google Scholar 

  30. Chen, G.Q., Li, Y.C.: Stability of Riemann solutions with large oscillation for the relativistic Euler equations. J. Differ. Equ. 202(2), 332–353, 2004

    ADS  MathSciNet  Google Scholar 

  31. Chen, G.Q., Li, Y.C.: Relativistic Euler equations for isentropic fluids: stability of Riemann solutions with large oscillation. Z. Angew. Math. Phys. 55(6), 903–926, 2004

    MathSciNet  Google Scholar 

  32. Li, Y.C., Wang, A.J.: Global entropy solutions of the Cauchy problem for nonhomogeneous relativistic Euler system. Chin. Ann. Math. 27B(5), 473–494, 2006

    MathSciNet  Google Scholar 

  33. Ruan, L.Z., Zhu, C.J.: Existence of global smooth solution to the relativistic Euler equations. Nonlinear Anal. 60(6), 993–1001, 2005

    MathSciNet  Google Scholar 

  34. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics Beyond the Monatomic Gas. Springer, New York 2015

    Google Scholar 

  35. Ruggeri, T., Sugiyama, M.: Classical and Relativistic Rational Extended Thermodynamics of Gases. Springer, Heidelberg 2021. (in press). ISBN 978-3-030-59143-4

    Google Scholar 

  36. Pennisi, S., Ruggeri, T.: Relativistic extended thermodynamics of rarefied polyatomic gas. Ann. Phys. 377, 414–445, 2017

    ADS  MathSciNet  Google Scholar 

  37. Pennisi, S., Ruggeri, T.: Relativistic Eulerian rarefied gas with internal structure. J. Math. Phys. 59, 043102-1–043102-12, 2018

    ADS  MathSciNet  Google Scholar 

  38. Borgnakke, C., Larsen, P.S.: Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. J. Comput. Phys. 18, 405–420, 1975

    ADS  Google Scholar 

  39. Carrisi, M.C., Ruggeri, T., Pennisi, S.: Monatomic limit of relativistic extended thermodynamics of polyatomic gas. Contin. Mech. Thermodyn. 31(2), 401–412, 2019

    ADS  MathSciNet  Google Scholar 

  40. Anile, A.M., Miller, J.C., Motta, S.: Formation and damping of relativistic strong shocks. Phys. Fluids 26, 1450–1460, 1983

    ADS  Google Scholar 

  41. Lanza, A., Miller, J.C., Motta, S.: Formation and damping of relativistic strong shocks in a Synge gas. Phys. Fluids 28, 97–103, 1985

    ADS  Google Scholar 

  42. Speck, J., Strain, R.M.: Hilbert expansion from the Boltzmann equation to relativistic fluids. Commun. Math. Phys. 304(1), 229–280, 2011

    ADS  MathSciNet  Google Scholar 

  43. Ruggeri, T., Strumia, A.: Main field and convex covariant density for quasilinear hyperbolic systems: relativistic fluid dynamics. Ann. Inst. Henri Poincaré 34(1), 65–84, 1981

    MathSciNet  Google Scholar 

  44. Boillat, G.: Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systémes hyperboliques. C. R. Acad. Sci. Paris A 278, 909–912, 1974

    MathSciNet  Google Scholar 

  45. Godunov, S.K.: An interesting class of quasilinear systems. Sov. Math. 2, 947, 1961

    Google Scholar 

  46. Boillat, G.: Recent mathematical methods in nonlinear wave propagation in CIME Course. Lecture Notes in Mathematics, Vol. 1640 (Ed. Ruggeri T.) Springer, 103–152, 1995

  47. Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. CBMS-NSF, Regional Conference Series in Applied Mathematics, Vol. 11, SIAM, 1973

  48. Liu, T.P.: Shock waves in the nonisentropic gas flow. J. Differ. Equ. 22(2), 442–452, 1976

    ADS  MathSciNet  Google Scholar 

  49. Liu, T.P., Yang, T.: \(L^1\) stability for \(2 \times 2\) systems of hyperbolic conservation laws. J. Am. Math. Soc. 12(3), 729–774, 1999

    Google Scholar 

  50. Bressan, A., Liu, T.P., Yang, T.: \(L^1\) stability estimates for \(n\times n\) conservation laws. Arch. Ration. Mech. Anal. 149(1), 1–22, 1999

    MathSciNet  Google Scholar 

  51. Bianchini, S., Bressan, A.: Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math. 161(1), 223–342, 2005

    MathSciNet  Google Scholar 

  52. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin 2009

    Google Scholar 

  53. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York 1972

    Google Scholar 

  54. Olver, F.W.J.: Asymptotics and special functions. AKP Classics, A K Peters Ltd., Wellesley. Reprint of the: original, p. 1997. Academic Press, New York 1974

    Google Scholar 

  55. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge 1922

    Google Scholar 

Download references

Acknowledgements

The work of T. Ruggeri was supported by GNFM (INdAM), the work of Q. H. Xiao was supported by grants from Youth Innovation Promotion Association CAS (No. 2017379) and the National Natural Science Foundation of China under Contract 11871469 and the work of H. J. Zhao was supported in part by the Grants from National Natural Science Foundation of China under Contracts 11671309 and 11731008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Ruggeri.

Additional information

Communicated by T.-P. Liu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Modified Bessel Functions and Properties

In this Appendix, we recall expressions of the modified Bessel functions and their basic properties. Moreover, with our observation, a simple corollary is also presented. Now we give the modified Bessel functions and collect their basic properties.

Lemma 1

[3, 54, 55] Let \(K_j(\gamma )\) be the Bessel functions defined by

$$\begin{aligned} K_j(\gamma )=\frac{(2^j)j!}{(2j)!}\frac{1}{\gamma ^j}\int _{\lambda =\gamma }^{\lambda =\infty }e^{-\lambda }(\lambda ^2-\gamma ^2)^{j-1/2}\mathrm{{d}}\lambda ,\quad (j\ge 0). \end{aligned}$$
(1)

Then the following identities hold:

$$\begin{aligned} K_j(\gamma )= & {} \frac{2^{j-1}(j-1)!}{(2j-2)!}\frac{1}{\gamma ^j}\int _{\lambda =\gamma }^{\lambda =\infty }e^{-\lambda }(\lambda ^2-\gamma ^2)^{j-3/2}\mathrm{{d}}\lambda ,\quad (j>0),\nonumber \\ K_{j+1}(\gamma )= & {} 2j\frac{K_j(\gamma )}{\gamma }+K_{j-1}(\gamma ),\quad (j\ge 1), \nonumber \\ K_j(\gamma )< & {} K_{j+1}(\gamma ),\quad (j\ge 0), \end{aligned}$$
(2)

and

$$\begin{aligned}&\frac{{\text {d}}}{\mathrm{{d}}\gamma }\left( \frac{K_j(\gamma )}{\gamma ^j}\right) =-\frac{K_{j+1}(\gamma )}{\gamma ^j},\quad (j\ge 0), \end{aligned}$$
(3)
$$\begin{aligned}&\displaystyle K_{j}(\gamma )=\sqrt{\frac{\pi }{2\gamma }}e^{-\gamma }\left( \gamma _{j,n}(\gamma )\gamma ^{-n}+\sum _{m=0}^{n-1}A_{j,m}\gamma ^{-m}\right) ,\quad (j\ge 0,~n\ge 1), \end{aligned}$$
(4)

where expressions of the coefficients in (4) are

$$\begin{aligned}&A_{j,0}=1\nonumber \\&A_{j,m}=\frac{(4j^2-1)(4j^2-3^2)\cdots (4j^2-(2m-1)^2)}{m!8^m},\quad (j\ge 0,~m\ge 1), \nonumber \\&|\gamma _{j,n}(\gamma )|\le 2e^{[j^2-1/4]\gamma ^{-1}}|A_{j,n}|,\quad (j\ge 0,~n\ge 1). \end{aligned}$$
(5)

On the other hand, according to [55] (on page 80), the Bessel functions defined in (1) can also be written in the following form:

$$\begin{aligned} K_0(\gamma )=&-\sum ^{\infty }_{m=0}\frac{(\frac{1}{2}\gamma )^{2m}}{m!m!}\Big [\ln \Big (\frac{\gamma }{2}\Big )-\psi (m+1)\Big ],\nonumber \\ K_n(\gamma )=&\frac{1}{2}\sum ^{n-1}_{m=0}(-1)^m\frac{(n-m-1)!}{m!}\Big (\frac{1}{2}\gamma \Big )^{-n+2m}\nonumber \\&+(-1)^{n+1}\sum ^{\infty }_{m=0}\frac{(\frac{1}{2}\gamma )^{n+2m}}{m!(m+n)!}\nonumber \\&\quad \times \Big [\ln \Big (\frac{\gamma }{2}\Big ) -\frac{1}{2}\psi (n+m)-\frac{1}{2}\psi (n+m+1)\Big ], \nonumber \\ \psi (1)=&-C_E,\quad \psi (m+1)=-C_E+\sum ^{m}_{k=1}\frac{1}{k},\quad m\ge 1,\nonumber \\ K_1(\gamma )=&\frac{1}{\gamma }+\sum ^{\infty }_{m=0}\frac{(\frac{1}{2}\gamma )^{2m+1}}{m!(m+1)!} \Big [\ln \Big (\frac{\gamma }{2}\Big )-\frac{1}{2}\psi (m+1)-\frac{1}{2}\psi (m+2)\Big ], \end{aligned}$$
(6)

where \(C_E=0.5772157\ldots \) is the Euler’s constant.

From Lemma 1, we immediately have the following corollary:

Corollary 2

For \(K_j(j\ge 0)\) defined in Lemma 1, it holds that

$$\begin{aligned}&K_1^2\le 3K_0K_2, \end{aligned}$$
(7)
$$\begin{aligned}&3\left( \frac{K_0(\gamma )}{K_1(\gamma )}\right) ^2+\frac{6}{\gamma }\frac{K_0(\gamma )}{K_1(\gamma )}-1\ge 0. \end{aligned}$$
(8)

Proof

From (1), we have

$$\begin{aligned} K_0(\gamma )&=\int _{\lambda =\gamma }^{\lambda =\infty }e^{-\lambda }(\lambda ^2-\gamma ^2)^{-1/2}\mathrm{{d}}\lambda ,\\ K_1(\gamma )&=\frac{1}{\gamma }\int _{\lambda =\gamma }^{\lambda =\infty }e^{-\lambda }(\lambda ^2-\gamma ^2)^{1/2}\mathrm{{d}}\lambda ,\\ K_2(\gamma )&=\frac{1}{3\gamma ^2}\int _{\lambda =\gamma }^{\lambda =\infty }e^{-\lambda }(\lambda ^2-\gamma ^2)^{3/2}\mathrm{{d}}\lambda . \end{aligned}$$

These equations imply (7) by H\(\ddot{o}\)lder’s inequality.

Taking \(j=1\) in (2) and inserting it to (7) yield

$$\begin{aligned} K_1^2(\gamma )\le 3K_0(\gamma )\left( \frac{2}{\gamma }K_1(\gamma )+K_0(\gamma )\right) . \end{aligned}$$

Then (8) follows. \(\square \)

B Estimates of the Ratio \(\pmb {\frac{K_0(\gamma )}{K_1(\gamma )}}\)

In this subsection, we concentrate on estimates of \(\frac{K_0(\gamma )}{K_1(\gamma )}\). Our estimates are divided into two cases according to different expressions of \(K_m (m\ge 1)\) given in Lemma 1: the case \(\gamma \in (0, \sqrt{2}]\) by (6) and the case \(\gamma \in [1.1, \infty )\) by (1). Here \(\gamma _0=1.1229189\ldots \) is a constant satisfying

$$\begin{aligned} \ln \Big (\frac{\gamma }{2}\Big )+C_E=0. \end{aligned}$$

We first estimate \(\frac{K_0(\gamma )}{K_1(\gamma )}\) for the first case \(\gamma \in (0, \sqrt{2}]\) by using the expressions (6).

Proposition 8

For \(\gamma \in [\gamma _0, \sqrt{2}]\), it holds that

$$\begin{aligned} \frac{K_0(\gamma )}{K_1(\gamma )}\le 1-\frac{\gamma _0-1}{\gamma }, \end{aligned}$$
(9)

and for \(\gamma \in (0, \gamma _0]\), we have \(\Big (\frac{K_0(\gamma )}{K_1(\gamma )}\Big )^2+\frac{2}{\gamma }\frac{K_0(\gamma )}{K_1(\gamma )}-1>0\). Moreover, we have

$$\begin{aligned} \frac{\gamma }{\sqrt{\gamma ^2+1}+1}\le \frac{K_0(\gamma )}{K_1(\gamma )}\le \gamma \left[ \frac{11}{16}-\left( \ln \left( \frac{\gamma }{2}\right) +C_E\right) \right] . \end{aligned}$$
(10)

Proof

We first prove (9). From (6), we get for \(\gamma \in [\gamma _0, \sqrt{2}]\) that

$$\begin{aligned} \gamma \frac{K_0(\gamma )}{K_1(\gamma )}\le \frac{-[\ln \left( \frac{\gamma }{2}\right) +C_E]\Big [\gamma ^2+\frac{\gamma ^4}{4}+\frac{\gamma ^6e^{\frac{\gamma ^2}{28}}}{64}\Big ]+\frac{\gamma ^4}{4}+ -\frac{3\gamma ^6 e^{\frac{\gamma ^2}{28}}}{128}}{[\ln \left( \frac{\gamma }{2}\right) +C_E]\Big [\frac{\gamma ^2}{2}+\frac{\gamma ^4}{16}+\frac{\gamma ^6e^{\frac{\gamma ^2}{28}}}{32\times 12}\Big ]+1-\frac{\gamma ^2}{4}- \frac{5\gamma ^4}{64}+ -\frac{5\gamma ^6 e^{\frac{\gamma ^2}{40}}}{32\times 36}}. \end{aligned}$$

Here we point out that the coefficient \(e^{\frac{\gamma ^2}{28}}\) and the estimate \(\gamma ^2+\frac{\gamma ^4}{4}+\frac{\gamma ^6e^{\frac{\gamma ^2}{28}}}{64}\) are chosen proper upper bounds which are convenient for computation and can guarantee the derivation of (9). The choice is not unique. Then, (9) holds if we can show

$$\begin{aligned}&[\ln \left( \frac{\gamma }{2}\right) +C_E]\Big [\gamma ^2+\frac{\gamma ^4}{4}+\frac{\gamma ^6e^{\frac{\gamma ^2}{28}}}{64}\Big ]+\frac{\gamma ^4}{4}+ -\frac{3\gamma ^6 e^{\frac{\gamma ^2}{28}}}{128}\\&\quad \le \Big \{[\ln \left( \frac{\gamma }{2}\right) +C_E]\Big [\frac{\gamma ^2}{2}+\frac{\gamma ^4}{16}+\frac{\gamma ^6e^{\frac{\gamma ^2}{28}}}{32\times 12}\Big ]+1-\frac{\gamma ^2}{4}- \frac{5\gamma ^4}{64}+ -\frac{5\gamma ^6 e^{\frac{\gamma ^2}{40}}}{32\times 36}\Big \}\\&\qquad \times (1+\gamma -\gamma _0); \end{aligned}$$

namely,

$$\begin{aligned} f(\gamma ):=&1+\gamma -\gamma _0-\frac{1}{4}(1+\gamma -\gamma _0)\gamma ^2-\frac{\gamma ^4}{64}[5(\gamma -\gamma _0)+21]\nonumber \\&-\Big [5(1+\gamma -\gamma _0)e^{\frac{\gamma ^2}{40}}+27e^{\frac{\gamma ^2}{28}}\Big ]\frac{\gamma ^6}{32\times 36}\nonumber \\&+\Big [\ln \left( \frac{\gamma }{2}\right) +C_E\Big ] \Big \{\frac{\gamma ^2}{2}(3+\gamma -\gamma _0)+\frac{\gamma ^4}{16}(5+\gamma -\gamma _0)\nonumber \\&+\frac{\gamma ^6}{32\times 12}\Big [(1+\gamma -\gamma _0)e^{\frac{\gamma ^2}{40}}+6e^{\frac{\gamma ^2}{28}}\Big ]\Big \}\ge 0 . \end{aligned}$$
(11)

Note that for \(\gamma \in [\gamma _0, \sqrt{2}]\),

$$\begin{aligned} f'(\gamma )=&1-\frac{1}{4}\gamma ^2-\frac{\gamma }{2}(1+\gamma -\gamma _0)-\frac{\gamma ^3}{16}[5(\gamma -\gamma _0)+21] -\frac{5\gamma ^4}{64}\\&-\frac{\gamma ^5}{32\times 6}\Big [5(1+\gamma -\gamma _0)e^{\frac{\gamma ^2}{40}}+27e^{\frac{\gamma ^2}{28}}\Big ]\\&+\frac{\gamma }{2}(3+\gamma -\gamma _0)+\frac{\gamma ^3}{16}(5+\gamma -\gamma _0)\\&+\frac{\gamma ^5}{32\times 12}\Big [(1+\gamma -\gamma _0)e^{\frac{\gamma ^2}{40}}+6e^{\frac{\gamma ^2}{28}}\Big ]\\&-\frac{\gamma ^6}{32\times 36}\Big \{5\Big [1+\frac{\gamma (1+\gamma -\gamma _0)}{20}\Big ]e^{\frac{\gamma ^2}{40}}+\frac{27\gamma }{14}e^{\frac{\gamma ^2}{28}}\Big ]\Big \}\\&+\Big [\ln \left( \frac{\gamma }{2}\right) +C_E\Big ] \Big \{(3+\gamma -\gamma _0)\gamma +\frac{\gamma ^2}{2}+\frac{\gamma ^3}{4}(5+\gamma -\gamma _0)+\frac{\gamma ^4}{16}\\&+\frac{\gamma ^5}{64}\Big [(1+\gamma -\gamma _0)e^{\frac{\gamma ^2}{40}}+6e^{\frac{\gamma ^2}{28}}\Big ]\\&+\frac{\gamma ^6}{32\times 12}\Big [\Big (1+\frac{\gamma (1+\gamma -\gamma _0)}{20}\Big )e^{\frac{\gamma ^2}{40}} +\frac{3\gamma }{7}e^{\frac{\gamma ^2}{28}}\Big ]\Big \}. \end{aligned}$$

We can further obtain that for \(\gamma \in [\gamma _0, \sqrt{2}]\),

$$\begin{aligned} f''(\gamma )=&4-\gamma _0+\gamma +\frac{(2\gamma _0-7)\gamma ^2}{4}-\gamma ^3\\&-\frac{\gamma ^4}{128}\Big [13(1+\gamma -\gamma _0)e^{\frac{\gamma ^2}{40}} +68e^{\frac{\gamma ^2}{28}}\Big ]\\&-\frac{\gamma ^6}{64}\Big \{\Big [3+\frac{3\gamma (1+\gamma -\gamma _0)}{20}\Big ]e^{\frac{\gamma ^2}{40}} +\frac{27\gamma }{7}e^{\frac{\gamma ^2}{28}}\Big \}\\&-\frac{\gamma ^6}{32\times 36}\Big \{ \Big [\frac{1-\gamma _0+3\gamma }{4}+\frac{\gamma ^2(1+\gamma -\gamma _0)}{80}\Big ]e^{\frac{\gamma ^2}{40}}\\&+\Big (\frac{27}{14}+\frac{27\gamma ^2}{256}\Big )e^{\frac{\gamma ^2}{28}}\Big \}+\Big [\ln \left( \frac{\gamma }{2}\right) +C_E\Big ] \Big \{3-\gamma _0+3\gamma +\\&+\frac{(15-3\gamma _0)\gamma ^2}{4}+\gamma ^3 \frac{5\gamma ^4}{64}\Big [(1+\gamma -\gamma _0)e^{\frac{\gamma ^2}{40}}+6e^{\frac{\gamma ^2}{28}}\Big ]\\&+\frac{\gamma ^5}{32}\Big [\Big (1+\frac{\gamma (1+\gamma -\gamma _0)}{20}\Big )e^{\frac{\gamma ^2}{40}} +\frac{3\gamma }{7}e^{\frac{\gamma ^2}{28}}\Big ]+\frac{\gamma ^6}{32\times 12}\\&\quad \times \Big \{ \Big [\frac{1-\gamma _0+3\gamma }{20}+\frac{\gamma ^2(1+\gamma -\gamma _0)}{400}\Big ]e^{\frac{\gamma ^2}{40}} \\&+\Big (\frac{3}{7}+\frac{3\gamma ^2}{98}\Big )e^{\frac{\gamma ^2}{28}}\Big \}\Big \} < 0. \end{aligned}$$

Then we have

$$\begin{aligned} f(\gamma )\ge \min \{f(\gamma _0), f(\sqrt{2})\} \end{aligned}$$

for \(\gamma \in [\gamma _0, \sqrt{2}]\). On the other hand, we have

$$\begin{aligned} f(\gamma _0)=&1-\frac{\gamma _0^2}{4}-\frac{21\gamma _0^4}{64}-\frac{\gamma _0^6}{32\times 36}\Big [5e^{\frac{\gamma _0^2}{40}}+27e^{\frac{\gamma _0^2}{28}}\Big ]>0,\quad \text{ and }\\ f(\sqrt{2})=&1+\sqrt{2}-\gamma _0-\frac{1+\sqrt{2}-\gamma _0}{2}-\frac{5(\sqrt{2}-\gamma _0)+21}{16}\\&-\Big [\dfrac{5(1+\sqrt{2}-\gamma _0)}{144}e^{\frac{1}{20}}+\dfrac{27}{144}e^{\frac{1}{14}}\Big ]+\Big [\ln (\frac{\sqrt{2}}{2})+C_E\Big ] \\&\quad \times \Big \{3+\sqrt{2}-\gamma _0+\frac{5+\sqrt{2}-\gamma _0}{4}\\&+\frac{1}{48}\Big [(1+\sqrt{2}-\gamma _0)e^{\frac{1}{20}}+6e^{\frac{1}{14}}\Big ]\Big \}>0. \end{aligned}$$

Then (11) holds.

Now we turn to the proof of (10). We first verify the left inequality of (10). For \(\gamma \in (0,\gamma _0],\) we use (6) to get

$$\begin{aligned} \frac{K_0(\gamma )}{K_1(\gamma )}\ge \frac{-\left[ \ln \left( \frac{\gamma }{2}\right) +C_E\right] \gamma -\frac{1}{4}\left[ \ln \left( \frac{\gamma }{2}\right) +C_E-1\right] \gamma ^3 }{1+\frac{1}{2}\left[ \ln \left( \frac{\gamma }{2}\right) +C_E-\frac{1}{2}\right] \gamma ^2+\frac{1}{16}\left[ \ln \left( \frac{\gamma }{2}\right) +C_E-\frac{5}{4}\right] \gamma ^4 }. \end{aligned}$$

(10) holds if we have

$$\begin{aligned} \overline{f}(\gamma )=&-\Big [\ln \left( \frac{\gamma }{2}\right) +C_E\Big ]\Big [1+\sqrt{\gamma ^2+1}+\frac{\gamma ^2(3+\sqrt{\gamma ^2+1})}{4}+\frac{\gamma ^4}{16}\Big ]\\&+\frac{\gamma ^2(2+\sqrt{\gamma ^2+1})}{4}+\frac{5\gamma ^4}{64}-1 >0. \end{aligned}$$

In fact, for \(\gamma \in (0,\gamma _0)\), we have

$$\begin{aligned} \overline{f}'(\gamma )=&-\frac{1}{\gamma }\Big [1+\sqrt{\gamma ^2+1}+\frac{\gamma ^2(3+\sqrt{\gamma ^2+1})}{4}+\frac{\gamma ^4}{16}\Big ]\\&+\frac{\gamma ^3}{4\sqrt{\gamma ^2+1}} +\frac{\gamma (2+\sqrt{\gamma ^2+1})}{2} +\frac{5\gamma ^3}{16}-\Big [\ln \left( \frac{\gamma }{2}\right) +C_E\Big ]\\&\quad \times \Big [\frac{\gamma }{\sqrt{\gamma ^2+1}}+\frac{\gamma (3+\sqrt{\gamma ^2+1})}{2} +\frac{\gamma ^3}{4\sqrt{\gamma ^2+1}}+\frac{\gamma ^3}{4}\Big ]\\<&(1+\sqrt{\gamma ^2+1})\Big [-\frac{1}{\gamma }+\frac{\gamma }{4}+\frac{\gamma ^3}{4(\gamma ^2+1)}\Big ]\\&-\gamma \left[ \ln \left( \frac{\gamma }{2}\right) +C_E\right] (3+\sqrt{\gamma ^2+1})\\<&-\frac{3(1+\sqrt{\gamma ^2+1})}{5\gamma }-\gamma \left[ \ln \left( \frac{\gamma }{2}\right) +C_E\right] (3+\sqrt{\gamma ^2+1})\\ <&0. \end{aligned}$$

Then \(\overline{f}(\gamma )\ge \overline{f}(\gamma _0)>0\). The left inequality of (10) holds.

We finally treat the right inequality of (10). For \(\gamma \in (0, \gamma _0]\), we use (6) to get

$$\begin{aligned} \gamma \frac{K_0(\gamma )}{K_1(\gamma )}\le \frac{-\left[ \ln \left( \frac{\gamma }{2}\right) +C_E\right] \gamma ^2-\frac{1}{4}\left[ \ln \left( \frac{\gamma }{2}\right) +C_E-1\right] \gamma ^4e^{\frac{\gamma ^2}{10}}}{1+\frac{1}{2}\left[ \ln \left( \frac{\gamma }{2}\right) +C_E-\frac{1}{2}\right] \gamma ^2e^{\frac{5\gamma ^2}{16}}}. \end{aligned}$$

To prove the right inequality of (10), we only need to derive the following inequality:

$$\begin{aligned}&-\left[ \ln \left( \frac{\gamma }{2}\right) +C_E\right] \gamma ^2-\frac{1}{4}\left[ \ln \left( \frac{\gamma }{2}\right) +C_E-1\right] \gamma ^4e^{\frac{\gamma ^2}{10}}\\&\quad \le \Big [1+\frac{1}{2}\Big (\ln \left( \frac{\gamma }{2}\right) +C_E-\frac{1}{2}\Big ) \gamma ^2 e^{\frac{5\gamma ^2}{16}}\Big ]\gamma ^2\left[ \frac{11}{16}-\left( \ln \left( \frac{\gamma }{2}\right) +C_E\right) \right] ; \end{aligned}$$

that is,

$$\begin{aligned} \tilde{f}(\gamma )=&\gamma ^2\Big \{-\Big [\Big (\ln \left( \frac{\gamma }{2}\right) +C_E\Big )-1\Big ]e^{\frac{\gamma ^2}{10}} +\Big [2\Big (\ln \left( \frac{\gamma }{2}\right) +C_E\Big )^2\nonumber \\&-\frac{19}{8}\Big (\ln \left( \frac{\gamma }{2}\right) +C_E\Big )+\frac{11}{16}\Big ]e^{\frac{5\gamma ^2}{16}}\Big \}-\frac{11}{4}\le 0 \end{aligned}$$
(12)

for \(\gamma \in (0, \gamma _0]\). Note the fact that

$$\begin{aligned} \tilde{f}'(\gamma )=&2\gamma \Big \{-\Big [\Big (\ln \left( \frac{\gamma }{2}\right) +C_E\Big )-1\Big ]e^{\frac{\gamma ^2}{10}} +\Big [2\Big (\ln \left( \frac{\gamma }{2}\right) +C_E\Big )^2\\&-\frac{19}{8}\Big (\ln \left( \frac{\gamma }{2}\right) +C_E\Big )+\frac{11}{16}\Big ]e^{\frac{5\gamma ^2}{16}}\Big \}-\gamma e^{\frac{\gamma ^2}{10}}-\frac{19\gamma }{8}e^{\frac{5\gamma ^2}{16}}\\&+4\Big (\ln \left( \frac{\gamma }{2}\right) +C_E\Big )\gamma e^{\frac{5\gamma ^2}{16}}+\frac{\gamma ^3}{5}\Big [-\Big (\ln \left( \frac{\gamma }{2}\right) +C_E\Big )+1\Big ]e^{\frac{\gamma ^2}{10}}\\&+\frac{5\gamma ^3}{8}\Big [2\Big (\ln \left( \frac{\gamma }{2}\right) +C_E\Big )^2-\frac{19}{8}\Big (\ln \left( \frac{\gamma }{2}\right) +C_E\Big ) +\frac{11}{16}\Big ]e^{\frac{5\gamma ^2}{16}}\\ \ge&\gamma \Big \{\Big (\frac{\gamma ^2}{5}+1\Big )e^{\frac{\gamma ^2}{10}} +\Big [-\frac{3}{4}\Big (\ln \left( \frac{\gamma }{2}\right) +C_E\Big )+\frac{55\gamma ^2}{128}-1\Big ]e^{\frac{5\gamma ^2}{16}}\Big \}\\ >&0. \end{aligned}$$

Here we used the estimate \(-\frac{3}{4}\Big (\ln \left( \frac{\gamma }{2}\right) +C_E\Big )+\frac{55\gamma ^2}{128}\ge \frac{1}{2}\) for \(\gamma \in (0, \gamma _0]\). Then we have

$$\begin{aligned} \tilde{f}(\gamma )\le \gamma ^2\Big (e^{\frac{\gamma ^2}{10}} +\frac{11}{16}e^{\frac{5\gamma ^2}{16}}\Big )-\frac{11}{4}<0 \end{aligned}$$

for \(\gamma \in (0, \gamma _0]\). (12) is verified. \(\square \)

For later use, we also need two different estimates:

Proposition 9

Let \(\gamma \in (\sqrt{2}, \infty )\). Then \(\frac{K_0(\gamma )}{K_1(\gamma )}\) satisfies:

$$\begin{aligned} 1-\frac{1}{2\gamma }\le \frac{K_0(\gamma )}{K_1(\gamma )}\le 1-\frac{1}{2\gamma }+\frac{3}{8\gamma ^2}+\frac{3}{16\gamma ^3}. \end{aligned}$$
(13)

Moreover, for \(\gamma \in (2, \infty )\), it holds that

$$\begin{aligned}&\frac{K_0(\gamma )}{K_1(\gamma )}\ge 1-\frac{1}{2\gamma }+\frac{3}{8\gamma ^2}-\frac{3}{8\gamma ^3}+\frac{63}{128\gamma ^4}-\frac{31}{20\gamma ^5}, \nonumber \\&\frac{K_0(\gamma )}{K_1(\gamma )}\le 1-\frac{1}{2\gamma }+\frac{3}{8\gamma ^2}-\frac{3}{8\gamma ^3}+\frac{63}{128\gamma ^4}+\frac{7}{8\gamma ^5}. \end{aligned}$$
(14)

Proof

Compared to the proof of (13), the proof of (14) is more tedious but simpler. For brevity, we only prove (13). From (5), one has

$$\begin{aligned} A_{0,1}&=-\frac{1}{8}, \quad A_{0,2}=\frac{9}{2\times 8^2}, \quad A_{0,3}=-\frac{75}{2\times 8^3}, \nonumber \\ A_{0,4}&=\frac{3\times 25\times 49}{8^5}, \quad A_{0,5}=-\frac{15\times 49\times 81}{8^6},\quad \text{ and } \end{aligned}$$
(15)
$$\begin{aligned} A_{1,1}&=\frac{3}{8}, \quad A_{1,2}=-\frac{15}{2\times 8^2}, \quad A_{1,3}=\frac{105}{2\times 8^3}, \nonumber \\ A_{1,4}&=-\frac{105\times 45}{8^5}, \quad A_{1,5}=\frac{21\times 45\times 77}{8^6}. \end{aligned}$$
(16)

Moreover, for \(\gamma >0\),

$$\begin{aligned}&r_{0,3}\le 2e^{-\frac{1}{4\gamma }}|A_{0,3}|= \frac{75e^{-\frac{1}{4\gamma }}}{8^3},\quad r_{1,3}\le 2e^{\frac{3}{4\gamma }}|A_{1,3}|= \frac{105e^{\frac{3}{4\gamma }}}{8^3}, \end{aligned}$$
(17)
$$\begin{aligned}&r_{0,4}\le 2e^{-\frac{1}{4\gamma }}|A_{0,4}|= \frac{75\times 49e^{-\frac{1}{4\gamma }}}{4\times 8^5},\nonumber \\&r_{1,4}\le 2e^{\frac{3}{4\gamma }}|A_{1,4}|= \frac{105\times 45e^{\frac{3}{4\gamma }}}{4\times 8^4}, \nonumber \\&r_{0,5}=2e^{-\frac{1}{4\gamma }}|A_{0,5}|\le \frac{15\times 49\times 81}{4\times 8^5}e^{-\frac{1}{4\gamma }},\nonumber \\&r_{1,5}=2e^{\frac{3}{4\gamma }}|A_{1,5}|\le \frac{21\times 45\times 77}{4\times 8^5}e^{\frac{3}{4\gamma }}. \end{aligned}$$
(18)

Firstly, we show that the inequality on the left side of (13) is true. We use (5), (15), (16) and (17) to get

$$\begin{aligned} \frac{K_0(\gamma )}{K_1(\gamma )}\ge \frac{ 1-\frac{1}{8\gamma }+\frac{9}{128\gamma ^2}-\frac{75}{8^3\gamma ^3}e^{-\frac{1}{4\gamma }}}{1+\frac{3}{8\gamma }-\frac{15}{128\gamma ^2}+\frac{105}{8^3\gamma ^3}e^{\frac{3}{4\gamma }}}. \end{aligned}$$

Then, it suffices to show that

$$\begin{aligned}&1-\frac{1}{8\gamma }+\frac{9}{128\gamma ^2}-\frac{75}{8^3\gamma ^3}e^{-\frac{1}{4\gamma }}\\&\quad \ge \left( 1+\frac{3}{8\gamma }-\frac{15}{128\gamma ^2}+\frac{105}{8^3\gamma ^3}e^{\frac{3}{4\gamma }}\right) \left( 1-\frac{1}{2\gamma }\right) \\&\quad =1-\frac{1}{8\gamma }-\left( \frac{3}{16}+\frac{15}{128}\right) \frac{1}{\gamma ^2}\\&\qquad +\left( \frac{105}{8^3}e^{\frac{3}{4\gamma }}+\frac{15}{256}\right) \frac{1}{\gamma ^3}-\frac{105}{2\times 8^3\gamma ^4}e^{\frac{3}{4\gamma }}; \end{aligned}$$

namely,

$$\begin{aligned}&\frac{3}{8\gamma ^2}+\frac{105}{2\times 8^3\gamma ^4}e^{\frac{3}{4\gamma }}\ge \left( \frac{75}{8^3}e^{-\frac{1}{4\gamma }}+\frac{105}{8^3}e^{\frac{3}{4\gamma }}+\frac{15}{256}\right) \frac{1}{\gamma ^3},\nonumber \\&\gamma ^2-\left( \frac{25}{64}e^{-\frac{1}{4\gamma }}+\frac{35}{64}e^{\frac{3}{4\gamma }}+\frac{5}{32}\right) \gamma +\frac{35}{128}e^{\frac{3}{4\gamma }}\ge 0. \end{aligned}$$
(19)

Denote \(f_3(\gamma )=:\gamma ^2-\left( \frac{25}{64}e^{-\frac{1}{4\gamma }}+\frac{35}{64}e^{\frac{3}{4\gamma }}+\frac{5}{32}\right) \gamma +\frac{35}{128}e^{\frac{3}{4\gamma }}\). It is easy to check that

$$\begin{aligned} f_3(1.1)>0,\qquad f_3'(\gamma )>0 ~~\text{ for } ~~\gamma \ge 1. \end{aligned}$$

Then (19) holds for \(\gamma \in [1.1,\infty )\subset (\sqrt{2}, \infty )\).

We now continue to verify the inequality on the right side of (13). Similarly, from (5), (15), (16) and (18), we get

$$\begin{aligned} \frac{K_0(\gamma )}{K_1(\gamma )}\le \frac{ 1-\frac{1}{8\gamma }+\frac{9}{128\gamma ^2}-\frac{75}{2\times 8^3\gamma ^3}+\frac{75\times 49e^{-\frac{1}{4\gamma }}}{4\times 8^4\gamma ^4}}{1+\frac{3}{8\gamma }-\frac{15}{128\gamma ^2}+\frac{105}{2\times 8^3\gamma ^3}-\frac{105\times 45e^{\frac{3}{4\gamma }}}{4\times 8^4\gamma ^4}}. \end{aligned}$$

The proof can be completed if we can show the following inequality:

$$\begin{aligned}&1-\frac{1}{8\gamma }+\frac{9}{128\gamma ^2}-\frac{75}{2\times 8^3\gamma ^3}+\frac{75\times 49e^{-\frac{1}{4\gamma }}}{4\times 8^4\gamma ^4}\\&\quad \le \Big (1+\frac{3}{8\gamma }-\frac{15}{128\gamma ^2}+\frac{105}{2\times 8^3\gamma ^3}-\frac{105\times 45e^{\frac{3}{4\gamma }}}{4\times 8^4\gamma ^4}\Big )\\&\quad \qquad \times \Big (1-\frac{1}{2\gamma }+\frac{3}{8\gamma ^2}+\frac{3}{16\gamma ^3}\Big )\\&\quad =1-\frac{1}{8\gamma }+\frac{9}{128\gamma ^2}+\left( \frac{3}{16}+\frac{9}{64}+\frac{15}{256}+\frac{105}{1024}\right) \frac{1}{\gamma ^3}\\&\qquad +\left( \frac{9}{128}-\frac{45}{1024}-\frac{105}{4\times 8^3}-\frac{105\times 45}{4\times 8^4}e^{\frac{3}{4\gamma }}\right) \frac{1}{\gamma ^4}\\&\qquad +\left( \frac{-45\times 4+315}{2\times 8^4}+\frac{105\times 45}{8^5}e^{\frac{3}{4\gamma }}\right) \frac{1}{\gamma ^5}\\&\qquad +\left( \frac{315}{4\times 8^4}-\frac{315\times 45}{4\times 8^5}e^{\frac{3}{4\gamma }}\right) \frac{1}{\gamma ^6}-\frac{315\times 45}{8^6}\frac{e^{\frac{3}{4\gamma }}}{\gamma ^7}. \end{aligned}$$

This inequality can be simplified as

$$\begin{aligned}&9\gamma ^4+\left( \frac{9}{8}-\frac{195}{128}-\frac{105\times 45e^{\frac{3}{4\gamma }}+75\times 49e^{-\frac{1}{4\gamma }}}{2\times 8^3}\right) \gamma ^3\nonumber \\&\quad + \Big (-\frac{45}{128}+\frac{315}{8^3}+\frac{105\times 45e^{\frac{3}{4\gamma }}}{4\times 8^3}\Big )\gamma ^2 \nonumber \\&\quad + \Big (\frac{315}{2\times 8^3}-\frac{315\times 45e^{\frac{3}{4\gamma }}}{2\times 8^4}\Big )\gamma -\frac{315\times 45e^{\frac{3}{4\gamma }}}{2\times 8^4}\ge 0. \end{aligned}$$
(20)

Denote the function on the left side of (20) as \(f_4(\gamma )\). It can be verified that

$$\begin{aligned} f_4(\sqrt{2})>0,\qquad f'_4(\gamma )>0 ~~\text{ for }~~ \gamma \in [1,\infty ) . \end{aligned}$$

Therefore, (20) holds for \(\gamma \in [\frac{5}{4}, \infty )\). \(\square \)

C Essential Estimates

In this part, we present estimates essential to the analysis in our paper.

Based on Lemma 1 and Corollary 2, the following two estimates hold:

Proposition 10

Let \(\gamma \in (0,\infty )\) and \(K_j(\gamma ) (j\ge 0)\) be the functions defined in Lemma 1. Then it holds that

$$\begin{aligned}&\gamma ^2\left( \frac{K_1(\gamma )}{K_2(\gamma )}\right) ^2+3\gamma \frac{K_1(\gamma )}{K_2(\gamma )}- \gamma ^2-3<0, \end{aligned}$$
(21)
$$\begin{aligned}&\gamma \left( \frac{K_1(\gamma )}{K_2(\gamma )}\right) ^3+4\left( \frac{K_1(\gamma )}{K_2(\gamma )}\right) ^2-\gamma \frac{K_1(\gamma )}{K_2(\gamma )}-1<0. \end{aligned}$$
(22)

Proof

We first prove (21). Its proof is divided into two cases: \(\gamma \in (0,\sqrt{2}]\) and \(\gamma \in (\sqrt{2},\infty )\). Firstly, by (2), we can rewrite (21) as

$$\begin{aligned} (\gamma ^2+3)\left( \frac{K_0(\gamma )}{K_1(\gamma )}\right) ^2+\left( \gamma +\frac{12}{\gamma }\right) \frac{K_0(\gamma )}{K_1(\gamma )}+\frac{12}{\gamma ^2}-\gamma ^2-2>0. \end{aligned}$$
(23)

Noting that \(K_0(\gamma ), K_1(\gamma )>0\) for \(\gamma \in (0,\infty )\) and

$$\begin{aligned} \frac{12}{\gamma ^2}-\gamma ^2-2>0,\quad \gamma \in (0,\sqrt{2}], \end{aligned}$$

(21) holds when \(\gamma \in (0,\sqrt{2}]\). For the case \(\gamma \in (\sqrt{2},\infty )\), we use (13) to get

$$\begin{aligned}&(\gamma ^2+3)\left( \frac{K_0(\gamma )}{K_1(\gamma )}\right) ^2+\left( \gamma +\frac{12}{\gamma }\right) \frac{K_0(\gamma )}{K_1(\gamma )}+\frac{12}{\gamma ^2}-\gamma ^2-2 \\&\quad \ge (\gamma ^2+3)\left( 1-\frac{1}{2\gamma }\right) ^2+\left( \gamma +\frac{12}{\gamma }\right) \left( 1-\frac{1}{2\gamma }\right) +\frac{12}{\gamma ^2}-\gamma ^2-2\\&\quad =\gamma ^2-\gamma +\frac{13}{4}-\frac{3}{\gamma }+\frac{3}{4\gamma ^2}+\gamma -\frac{1}{2}+\frac{12}{\gamma }-\frac{6}{\gamma ^2}-\gamma ^2-2 \\&\quad =\frac{3}{4}+\frac{9}{\gamma }-\frac{21}{4\gamma ^2}>0. \end{aligned}$$

This yields (23). Then (21) follows.

Now we turn to prove (22). The proof is also done in two cases, \(\gamma \in (0,\sqrt{2}]\) and \(\gamma \in (\sqrt{2},\infty )\), separately. We use (2) again to rewrite (22) as

$$\begin{aligned} \left( \frac{K_0(\gamma )}{K_1(\gamma )}\right) ^3+\left( \gamma +\frac{6}{\gamma }\right) \left( \frac{K_0(\gamma )}{K_1(\gamma )}\right) ^2+\frac{12}{\gamma ^2}\frac{K_0(\gamma )}{K_1(\gamma )}-\gamma -\frac{4}{\gamma }+\frac{8}{\gamma ^3}>0. \end{aligned}$$
(24)

We first show that (24) is true when \(\gamma \in (0,\sqrt{2})\). For this purpose, we use (8) to get

$$\begin{aligned}&\left( \frac{K_0(\gamma )}{K_1(\gamma )}\right) ^3+\left( \gamma +\frac{6}{\gamma }\right) \left( \frac{K_0(\gamma )}{K_1(\gamma )}\right) ^2+\frac{12}{\gamma ^2}\frac{K_0(\gamma )}{K_1(\gamma )}-\gamma -\frac{4}{\gamma }+\frac{8}{\gamma ^3} \\&\quad =\frac{K_0(\gamma )}{K_1(\gamma )}\left[ \left( \frac{K_0(\gamma )}{K_1(\gamma )}\right) ^2+\frac{2}{\gamma }\frac{K_0(\gamma )}{K_1(\gamma )}-\frac{1}{3}\right] \\&\qquad +\left( \gamma +\frac{4}{\gamma }\right) \left[ \left( \frac{K_0(\gamma )}{K_1(\gamma )}\right) ^2 +\frac{2}{\gamma }\frac{K_0(\gamma )}{K_1(\gamma )}-\frac{1}{3}\right] \\&\qquad +\frac{1}{3}\left( \gamma +\frac{4}{\gamma }\right) +\Big (\frac{1}{3}-2+\frac{4}{\gamma ^2}\Big ) \frac{K_0(\gamma )}{K_1(\gamma )}-\gamma -\frac{4}{\gamma }+\frac{8}{\gamma ^3} \\&\quad>\left( \frac{4}{\gamma ^2}-\frac{5}{3}\right) \frac{K_0(\gamma )}{K_1(\gamma )}-\frac{2\gamma }{3}-\frac{8}{3\gamma }+\frac{8}{\gamma ^3}>0, \end{aligned}$$

when \(\gamma \in (0,\sqrt{2}]\). Here we have used the simple estimates: for \(\gamma \in (0,\sqrt{2}]\),

$$\begin{aligned} \frac{4}{\gamma ^2}-\frac{5}{3}>0,\quad -\frac{2\gamma }{3}-\frac{8}{3\gamma }+\frac{8}{\gamma ^3}\ge 0. \end{aligned}$$

When \(\gamma \in (\sqrt{2},\infty )\), in a fashion similar to the proof of (21), we use (13) to obtain

$$\begin{aligned}&\Big (\frac{K_0(\gamma )}{K_1(\gamma )}\Big )^3+\left( \gamma +\frac{6}{\gamma }\right) \left( \frac{K_0(\gamma )}{K_1(\gamma )}\right) ^2 +\frac{12}{\gamma ^2}\frac{K_0(\gamma )}{K_1(\gamma )}-\gamma -\frac{4}{\gamma }+\frac{8}{\gamma ^3}\nonumber \\&\quad \ge \left( \gamma +1+\frac{11}{2\gamma }\right) \left( 1-\frac{1}{\gamma }+\frac{1}{4\gamma ^2}\right) + \frac{12}{\gamma ^2}+\frac{2}{\gamma ^3}-\gamma -\frac{4}{\gamma }\nonumber \\&\quad =\gamma +\frac{19}{4\gamma }-\frac{21}{4\gamma ^2}+\frac{11}{8\gamma ^3}+ \frac{12}{\gamma ^2}+\frac{2}{\gamma ^3}-\gamma -\frac{4}{\gamma } \nonumber \\&\quad =\frac{3}{4\gamma }+\frac{27}{4\gamma ^2}+\frac{27}{8\gamma ^3}>0. \end{aligned}$$

\(\square \)

Remark 3

In the proof of Proposition 10, instead of working on the ratio \(\frac{K_1(\gamma )}{K_2(\gamma )}\) directly, we transformed the ratio \(\frac{K_1(\gamma )}{K_2(\gamma )}\) into the ratio \(\frac{K_0(\gamma )}{K_1(\gamma )}\) and divided our proof of (21) and (22) into two cases, \(\gamma \in (0,\sqrt{2}]\) and \(\gamma \in (\sqrt{2},\infty )\). The motivations for this are as follows: from the expansion of \(K_j(\gamma )\) in (4) and (5), we can see that it works well for \(\gamma \) which is a little larger than 1, and vice versa; the estimate of the remaining term \(|r_{j,n}(\gamma )|\) seems more accurate when j is smaller due to the coefficient \(e^{[j^2-1/4]\gamma ^{-1}}\) in the estimate, which increase more rapidly than the normal exponential function; when \(\gamma \) is small, we can make use of the simple inequality (8) from the observation (7).

Remark 4

Estimates (21) and (22) imply the two Conjectures in [42]. Moreover, these two estimates are of essential importance in this paper.

Proposition 11

Let \(\gamma \in (0,\infty )\) and \(K_j(\gamma ) (j\ge 0)\) be the functions defined in Lemma 1. Then it holds that

$$\begin{aligned} \gamma ^2\left( \frac{K_0(\gamma )}{K_1(\gamma )}\right) ^3+2\gamma \left( \frac{K_0(\gamma )}{K_1(\gamma )}\right) ^2-(\gamma ^2 +2)\frac{K_0(\gamma )}{K_1(\gamma )}- \gamma <0. \end{aligned}$$
(25)

Proof

For \(\gamma \le 2,\) it is straightforward to get (25) by the fact \(\frac{K_0(\gamma )}{K_1(\gamma )}<1\). For the case \(\gamma >2\), we use (13) to get

$$\begin{aligned} \frac{K_0(\gamma )}{K_1(\gamma )}\le 1-\frac{1}{2\gamma }+\frac{1}{2\gamma ^2}, \end{aligned}$$

and

$$\begin{aligned}&\gamma ^2\left( \frac{K_0(\gamma )}{K_1(\gamma )}\right) ^2+2\gamma \left( \frac{K_0(\gamma )}{K_1(\gamma )}\right) ^2-(\gamma ^2 +2)\frac{K_0(\gamma )}{K_1(\gamma )}- \gamma \\&\quad \le \gamma \frac{K_0(\gamma )}{K_1(\gamma )}\Big [\gamma \Big (1-\frac{1}{2\gamma } +\frac{1}{2\gamma ^2}\Big )^2+2\Big (1-\frac{1}{2\gamma }+\frac{1}{2\gamma ^2}\Big )\Big ]\\&\qquad -(\gamma ^2 +2)\frac{K_1(\gamma )}{K_2(\gamma )}- \gamma \\&\quad \le \gamma \frac{K_0(\gamma )}{K_1(\gamma )}\Big [\gamma \Big (1-\frac{1}{\gamma } +\frac{5}{4\gamma ^2}-\frac{1}{2\gamma ^3}+\frac{1}{4\gamma ^4}\Big )+2-\frac{1}{\gamma }+\frac{1}{\gamma ^2}\Big )\Big ]\\&\qquad -(\gamma ^2 +2)\frac{K_0(\gamma )}{K_1(\gamma )}- \gamma \\&\quad \le \frac{K_0(\gamma )}{K_1(\gamma )}\Big (\gamma -\frac{3}{4}+\frac{1}{2\gamma }+\frac{1}{4\gamma ^2}\Big )-\gamma <0. \end{aligned}$$

\(\square \)

D Proof of Proposition 2 for the Genuine Nonlinearity

Proof of Proposition 2

We only need to prove (46). If this is done, (47) follows immediately from (45) and (46). From (42), we can further obtain that

$$\begin{aligned} e_{pp}=&\frac{e_{p}}{p}-\frac{e}{p^2}+\frac{1}{\partial _\gamma p}\partial _\gamma \left( \frac{p}{\partial _\gamma p}\frac{\hbox {d}}{\mathrm{{d}}\gamma }\left( \gamma \frac{K_1(\gamma )}{K_2(\gamma )}\right) \right) \nonumber \\ =&\frac{1}{p}\frac{\gamma \left( \frac{K_1(\gamma )}{K_2(\gamma )}\right) ^2 +4\frac{K_1(\gamma )}{K_2(\gamma )}-\gamma }{\gamma \left( \frac{K_1(\gamma )}{K_2(\gamma )}\right) ^2+3\frac{K_1(\gamma )}{K_2(\gamma )} -\gamma -\frac{4}{\gamma }} \nonumber \\&+\frac{1}{p}\frac{1}{\gamma \left( \frac{K_1(\gamma )}{K_2(\gamma )}\right) ^2+3\frac{K_1(\gamma )}{K_2(\gamma )}-\gamma -\frac{4}{\gamma }}\nonumber \\&\quad \times \frac{\hbox {d}}{\mathrm{{d}}\gamma }\Big (\frac{\gamma \Big (\frac{K_1(\gamma )}{K_2(\gamma )}\Big )^2 +4\frac{K_1(\gamma )}{K_2(\gamma )}-\gamma }{\gamma \Big (\frac{K_1(\gamma )}{K_2(\gamma )}\Big )^2+3\frac{K_1(\gamma )}{K_2(\gamma )} -\gamma -\frac{4}{\gamma }}\Big ). \end{aligned}$$
(26)

Then we use (42) and (26) to get

$$\begin{aligned}&(e+p)e_{pp}-2e_{p}(e_{p}-1)\nonumber \\&\quad =e_{p}(-2e_{p}+3)+\frac{e}{p}\Big (e_{p}-\frac{e}{p}-1\Big ) +\frac{e+p}{\partial _\gamma p}\partial _\gamma \Big (\frac{p}{\partial _\gamma p}\frac{\hbox {d}}{\mathrm{{d}}\gamma }\Big (\gamma \frac{K_1(\gamma )}{K_2(\gamma )}\Big )\Big ) \nonumber \\&< -9+\Big (\gamma \frac{K_1(\gamma )}{K_2(\gamma )}+3\Big )\frac{\frac{K_1(\gamma )}{K_2(\gamma )}+\frac{4}{\gamma }}{\gamma \Big (\frac{K_1(\gamma )}{K_2(\gamma )}\Big )^2+3\frac{K_1(\gamma )}{K_2(\gamma )}-\gamma -\frac{4}{\gamma }}\nonumber \\&\qquad +\Big (\gamma \frac{K_1(\gamma )}{K_2(\gamma )}+4\Big )\Bigg [\frac{\frac{1}{\gamma }}{\gamma \Big (\frac{K_1(\gamma )}{K_2(\gamma )}\Big )^2 +3\frac{K_1(\gamma )}{K_2(\gamma )}-\gamma -\frac{4}{\gamma }}-\Big (\frac{K_1(\gamma )}{K_2(\gamma )}+\frac{4}{\gamma }\Big )\nonumber \\&\qquad \quad \times \frac{\Big [2\gamma \Big (\frac{K_1(\gamma )}{K_2(\gamma )}\Big )^3+10\Big (\frac{K_1(\gamma )}{K_2(\gamma )}\Big )^2 +\Big (\frac{9}{\gamma }-2\gamma \Big )\frac{K_1(\gamma )}{K_2(\gamma )}-4+\frac{4}{\gamma ^2}\Big ]}{\Big (\gamma \Big (\frac{K_1(\gamma )}{K_2(\gamma )}\Big )^2+3\frac{K_1(\gamma )}{K_2(\gamma )}-\gamma -\frac{4}{\gamma }\Big )^3}\Bigg ]\nonumber \\&= -9+\frac{\left( \gamma \frac{K_1(\gamma )}{K_2(\gamma )}+4\right) \left( \frac{K_1(\gamma )}{K_2(\gamma )}+\frac{4}{\gamma }\right) }{\left( \gamma \left( \frac{K_1(\gamma )}{K_2(\gamma )}\right) ^2+3\frac{K_1(\gamma )}{K_2(\gamma )}-\gamma -\frac{4}{\gamma }\right) ^3}\times \mathcal {I}_1(\gamma ) \Big ], \end{aligned}$$
(27)

where

$$\begin{aligned} \mathcal {I}_1(\gamma )=&\gamma ^2\Big (\frac{K_1(\gamma )}{K_2(\gamma )}\Big )^4+4\gamma \Big (\frac{K_1(\gamma )}{K_2(\gamma )}\Big )^3 -(2\gamma ^2+9)\left( \frac{K_1(\gamma )}{K_2(\gamma )}\right) ^2\nonumber \\&-\Big (4\gamma +\frac{33}{\gamma }\Big )\frac{K_1(\gamma )}{K_2(\gamma )}+\gamma ^2+12+\frac{12}{\gamma ^2}. \end{aligned}$$

Noting that

$$\begin{aligned} \gamma \left( \frac{K_1(\gamma )}{K_2(\gamma )}\right) ^2+3\frac{K_1(\gamma )}{K_2(\gamma )}-\gamma -\frac{4}{\gamma }<0, \end{aligned}$$

in order to show (46), it suffices to prove

$$\begin{aligned} \mathcal {I}_1(\gamma )>0 \end{aligned}$$
(28)

in (27). By using \(K_2(\gamma )=\frac{2}{\gamma }K_1(\gamma )+K_0(\gamma )\), we can rewrite (28) as

$$\begin{aligned} \mathcal {I}_2(\gamma )=&\Big (\gamma ^2+12+\frac{12}{\gamma ^2}\Big )\Big (\frac{K_0(\gamma )}{K_1(\gamma )}\Big )^4 +\Big (4\gamma +\frac{63}{\gamma }+\frac{96}{\gamma ^3}\Big )\Big (\frac{K_0(\gamma )}{K_1(\gamma )}\Big )^3 \nonumber \\&+\Big (-2\gamma ^2-9+\frac{90}{\gamma ^2}+\frac{288}{\gamma ^4}\Big )\Big (\frac{K_0(\gamma )}{K_1(\gamma )}\Big )^2\nonumber \\&+\Big (-4\gamma -\frac{52}{\gamma }-\frac{12}{\gamma ^3}+\frac{384}{\gamma ^5}\Big )\frac{K_0(\gamma )}{K_1(\gamma )}\nonumber \\&+\gamma ^2-\frac{52}{\gamma ^2}-\frac{72}{\gamma ^4}+\frac{192}{\gamma ^6}>0. \end{aligned}$$
(29)

Now we come to prove (29). It is easy to find that (29) holds for \(\gamma \in (0, r_0]\).

Now we turn to show that (29) holds for \(\gamma \in (r_0, \infty )\). Rewrite \(\mathcal {I}_2(\gamma )\) as

$$\begin{aligned} \mathcal {I}_2(\gamma )&=\Big (\frac{K_0(\gamma )}{K_1(\gamma )}-1+\frac{1}{2\gamma }\Big )\Big [\Big (\gamma ^2+12+\frac{12}{\gamma ^2}\Big )\Big (\frac{K_0(\gamma )}{K_1(\gamma )}\Big )^3\\&\quad +\Big (\gamma ^2+\frac{7\gamma }{2}+ 12+\frac{57}{\gamma }+\frac{12}{\gamma ^2}+\frac{90}{\gamma ^3}\Big )\Big (\frac{K_0(\gamma )}{K_1(\gamma )}\Big )^2\\&\quad +\Big (-\gamma ^2+3\gamma +\frac{5}{4}+\frac{51}{\gamma }+\frac{147}{2\gamma ^2}+{84}{\gamma ^3}+\frac{243}{\gamma ^4}\Big )\frac{K_0(\gamma )}{K_1(\gamma )}\\&\quad -\gamma ^2-\frac{\gamma }{2}-\frac{1}{4}-\frac{13}{8\gamma }+\frac{48}{\gamma ^2}+\frac{141}{4\gamma ^3}+\frac{201}{\gamma ^4}+\frac{525}{2\gamma ^5}\Big ]\\&\quad -\frac{3}{2\gamma }-\frac{51}{16\gamma ^2}+\frac{45}{4\gamma ^3}+\frac{891}{8\gamma ^4}+\frac{162}{\gamma ^5}+\frac{243}{4\gamma ^6}\\&=\Big (\frac{K_0(\gamma )}{K_1(\gamma )}-1+\frac{1}{2\gamma }\Big )\Big \{\Big (\frac{K_0(\gamma )}{K_1(\gamma )}-1+\frac{1}{2\gamma }\Big )\\&\times \Big [\Big (\gamma ^2+12+\frac{12}{\gamma ^2}\Big ) \Big (\frac{K_0(\gamma )}{K_1(\gamma )}\Big )^2\\&\quad +\Big (2\gamma ^2+3\gamma +24+\frac{51}{\gamma }+\frac{24}{\gamma ^2}+\frac{84}{\gamma ^3}\Big )\frac{K_0(\gamma )}{K_1(\gamma )}\\&\quad +\gamma ^2+5\gamma +\frac{95}{4}+\frac{90}{\gamma }+\frac{72}{\gamma ^2}+\frac{156}{\gamma ^3}+\frac{201}{\gamma ^4}\Big ]\\&\quad +4\gamma +21+\frac{153}{2\gamma }+\frac{75}{\gamma ^2}+\frac{621}{4\gamma ^3}+\frac{324}{\gamma ^4}+\frac{162}{\gamma ^5}\Big \}\\&\quad -\frac{3}{2\gamma }-\frac{51}{16\gamma ^2}+\frac{45}{4\gamma ^3}+\frac{891}{8\gamma ^4}+\frac{162}{\gamma ^5}+\frac{243}{4\gamma ^6}. \end{aligned}$$

Note that

$$\begin{aligned} -\frac{3}{2\gamma }-\frac{51}{16\gamma ^2}+\frac{45}{4\gamma ^3}+\frac{881}{8\gamma ^4}+\frac{162}{\gamma ^5}+\frac{243}{4\gamma ^6}>0, \quad \text{ for }~~\gamma \le 4. \end{aligned}$$

Then (29) holds for \(\gamma \in (0, 4]\).

Finally we show (29) for \(\gamma >4\). For the case \(\gamma >4\), we use (14) to get

$$\begin{aligned} \frac{K_0(\gamma )}{K_1(\gamma )}\ge 1-\frac{1}{2\gamma }+\frac{3}{8\gamma ^2}-\frac{3}{8\gamma ^3}. \end{aligned}$$

Moreover, we have

$$\begin{aligned}&\Big (4\gamma +21+\frac{153}{2\gamma }\Big )\Big (\frac{3}{8\gamma ^2}-\frac{3}{8\gamma ^3}\Big ) -\frac{3}{2\gamma }-\frac{51}{16\gamma ^2}\\&\qquad +\frac{45}{4\gamma ^3}+\frac{891}{8\gamma ^4}+\frac{162}{\gamma ^5}+\frac{243}{4\gamma ^6}\\&\quad =\Big (\frac{513}{16}+\frac{45}{4}\Big )\frac{1}{\gamma ^3} +\frac{1323}{16\gamma ^4}+\frac{162}{\gamma ^5}+\frac{243}{4\gamma ^6}>0. \end{aligned}$$

This proves (29) for \(\gamma >4\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggeri, T., Xiao, Q. & Zhao, H. Nonlinear Hyperbolic Waves in Relativistic Gases of Massive Particles with Synge Energy. Arch Rational Mech Anal 239, 1061–1109 (2021). https://doi.org/10.1007/s00205-020-01590-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01590-8

Navigation