Skip to main content
Log in

Stable Grothendieck polynomials and K-theoretic factor sequences

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We formulate a nonrecursive combinatorial rule for the expansion of the stable Grothendieck polynomials of Fomin and Kirillov (Proc Formal Power Series Alg Comb, 1994) in the basis of stable Grothendieck polynomials for partitions. This gives a common generalization, as well as new proofs of the rule of Fomin and Greene (Discret Math 193:565–596, 1998) for the expansion of the stable Schubert polynomials into Schur polynomials, and the K-theoretic Grassmannian Littlewood–Richardson rule of Buch (Acta Math 189(1):37–78, 2002). The proof is based on a generalization of the Robinson–Schensted and Edelman–Greene insertion algorithms. Our results are applied to prove a number of new formulas and properties for K-theoretic quiver polynomials, and the Grothendieck polynomials of Lascoux and Schützenberger (C R Acad Sci Paris Ser I Math 294(13):447–450, 1982). In particular, we provide the first K-theoretic analogue of the factor sequence formula of Buch and Fulton (Invent Math 135(3):665–687, 1999) for the cohomological quiver polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billey S., Jockusch W and Stanley R.P. (1993). Some combinatorial properties of Schubert polynomials. J. Algebraic Comb. 2(4): 345–374

    Article  MATH  MathSciNet  Google Scholar 

  2. Buch A.S. (2002). Grothendieck classes of quiver varieties. Duke Math. J. 115(1): 75–103

    Article  MATH  MathSciNet  Google Scholar 

  3. Buch A.S. (2002). A Littlewood–Richardson rule for the K-theory of Grassmannians. Acta Math. 189(1): 37–78

    Article  MATH  MathSciNet  Google Scholar 

  4. Buch A.S. (2005). Alternating signs of quiver coefficients. J. Am. Math. Soc. 18(1): 217–237

    Article  MATH  MathSciNet  Google Scholar 

  5. Buch A.S., Fehér L.M. and Rimányi R. (2005). Positivity of quiver coefficients through Thom polynomials. Adv. Math. 197(1): 306–320

    Article  MATH  MathSciNet  Google Scholar 

  6. Buch A.S. and Fulton W. (1999). Chern class formulas for quiver varieties. Invent. Math. 135(3): 665–687

    Article  MATH  MathSciNet  Google Scholar 

  7. Buch A.S., Kresch A., Tamvakis H and Yong A. (2005). Grothendieck polynomials and quiver formulas. Am. J. Math. 127(3): 551–567

    Article  MATH  MathSciNet  Google Scholar 

  8. Buch A.S., Kresch A., Tamvakis H and Yong A. (2004). Schubert polynomials and quiver formulas. Duke Math. J. 122: 125–143

    Article  MATH  MathSciNet  Google Scholar 

  9. Buch A.S., Sottile F and Yong A. (2005). Quiver coefficients are Schubert structure constants. Math. Res. Lett. 12(4): 567–574

    MATH  MathSciNet  Google Scholar 

  10. Edelman P. and Greene C. (1987). Balanced tableaux. Adv. Math. 63(1): 42–99

    Article  MATH  MathSciNet  Google Scholar 

  11. Fomin S., Gelfand S. and Postnikov A. (1997). Quantum Schubert polynomials. J. Am. Math. Soc 10: 565–596

    Article  MATH  MathSciNet  Google Scholar 

  12. Fomin, S., Greene, C.: Noncommutative Schur functions and their applications. Discret. Math. 193(1–3), 179–200 (1998) Selected papers in honor of Adriano Garsia (Taormina, 1994)

    Google Scholar 

  13. Fomin, S., Kirillov, A.N.: Grothendieck polynomials and the Yang-Baxter equation. Proc. Formal Power Series and Alg. Comb. 183–190 (1994)

  14. Fomin, S., Kirillov, A.N.: The Yang-Baxter equation, symmetric functions, and Schubert polynomials. In: Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993), vol. 153, pp. 123–143 (1996)

  15. Fulton W. (1999). Universal Schubert polynomials. Duke Math. J. 96(3): 575–594

    Article  MATH  MathSciNet  Google Scholar 

  16. Knutson A., Miller E and Shimozono M. (2006). Four positive formulae for type A quiver polynomials. Invent. Math. 166: 229–325

    Article  MATH  MathSciNet  Google Scholar 

  17. Lascoux, A.: Transition on Grothendieck Polynomials. Physics and Combinatorics, 2000 (Nagoya), pp. 164–179. World Scientific Publishing, River Edge (2001)

  18. Lascoux A. and Schützenberger M.-P. (1982). Polynômes de Schubert. Acad C.R. Sci. Paris Ser. I Math. 294(13): 447–450

    MATH  Google Scholar 

  19. Lascoux A. and Schützenberger M.-P. (1982). Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux. C. R. Acad. Sci. Paris Ser. I Math. 295(11): 629–633

    MATH  MathSciNet  Google Scholar 

  20. Miller E. (2005). Alternating formulae for K-theoretic quiver polynomials. Duke Math. J. 128(1): 1–17

    Article  MATH  MathSciNet  Google Scholar 

  21. Robinson G. de B. (1938). On the representations of the symmetric group. Am. J. Math. 60: 745–760

    Article  MATH  Google Scholar 

  22. Schensted C. (1961). Longest increasing and decreasing subsequences. Can. J. Math. 13: 179–191

    MATH  MathSciNet  Google Scholar 

  23. Stanley R.P. (1984). On the number of reduced decompositions of elements of Coxeter groups. Eur. J. Comb. 5: 359–372

    MATH  MathSciNet  Google Scholar 

  24. Zelevinskiĭ A.V. (1985). Two remarks on graded nilpotent classes. Uspekhi Mat. Nauk 40(1(241)): 199–200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Tamvakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buch, A.S., Kresch, A., Shimozono, M. et al. Stable Grothendieck polynomials and K-theoretic factor sequences. Math. Ann. 340, 359–382 (2008). https://doi.org/10.1007/s00208-007-0155-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0155-6

Mathematics Subject Classification (2000)

Navigation