Skip to main content
Log in

Measurable Riemannian geometry on the Sierpinski gasket: the Kusuoka measure and the Gaussian heat kernel estimate

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study the standard Dirichlet form and its energy measure,called the Kusuoka measure, on the Sierpinski gasket as aprototype of “measurable Riemannian geometry”. The shortest pathmetric on the harmonic Sierpinski gasket is shown to be thegeodesic distance associated with the “measurable Riemannianstructure”. The Kusuoka measure is shown to have the volumedoubling property with respect to the Euclidean distance and alsoto the geodesic distance. Li–Yau type Gaussian off-diagonal heatkernel estimate is established for the heat kernel associated withthe Kusuoka measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow M.T. and Perkins E.A. (1988). Brownian motion on the Sierpinski gasket. Probab. Theory Relat. Fields 79: 542–624

    Article  MathSciNet  Google Scholar 

  2. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in Math., vol. 19. de Gruyter, Berlin (1994)

  3. Goldstein, S.: Random walks and diffusions on fractals. In: Kesten, H. (ed.) Percolation Theory and Ergodic Theory of Infinite Particle Systems, IMA Math. Appl., vol. 8, pp. 121–129. Springer, Heidelberg (1987)

  4. Grigor’yan, A.: The heat equation on noncompact Riemannian manifolds (in Russian). Mat. Sb. 182, 55–87 (1991). English translation in Math. USSR-Sb. 72, 47–77 (1992)

  5. Kigami, J.: Volume doubling measures and heat kernel estimates on self-similar sets. Mem. Am. Math. Soc. (to appear)

  6. Kigami J. (1989). A harmonic calculus on the Sierpinski spaces. Jpn J. Appl. Math. 6: 259–290

    Article  MATH  MathSciNet  Google Scholar 

  7. Kigami J. (1993). Harmonic calculus on p.c.f. self-similar sets. Trans. Am. Math. Soc. 335: 721–755

    Article  MATH  MathSciNet  Google Scholar 

  8. Kigami, J.: Harmonic metric and Dirichlet form on the Sierpinski gasket. In: Elworthy, K.D., Ikeda, N. (eds.) Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals, Pitman Research Notes in Math., vol. 283, pp. 201–218. Longman, London (1993)

  9. Kigami J. (2001). Analysis on Fractals. Cambridge Tracts in Math., vol. 143. Cambridge University Press, Cambridge

    Google Scholar 

  10. Kusuoka, S.: A diffusion process on a fractal. In: Ito, K., Ikeda, N. (eds.) Probabilistic Methods on Mathematical Physics, Proceedings of Taniguchi International Symposium (Katata & Kyoto, 1985) (Tokyo) Kinokuniya, pp. 251–274 (1987)

  11. Kusuoka S. (1989). Dirichlet forms on fractals and products of random matrices. Publ. Res. Inst. Math. Sci. 25: 659–680

    Article  MATH  MathSciNet  Google Scholar 

  12. Kusuoka, S.: Lecture on diffusion process on nested fractals. Lecture Notes in Math., vol. 1567, pp. 39–98. Springer, Heidelberg (1993)

  13. Li P. and Yau S.-T. (1986). On the parabolic kernel of the Schrödinger operator. Acta Math. 156: 153–201

    Article  MathSciNet  Google Scholar 

  14. Metz, V., Sturm, K.: Gaussian and non-Gaussian estimates for heat kernels on the Sierpinski gasket. Dirichlet forms and stochastic processes (Beijing, 1993) (Berlin), pp. 283–289. de Gruyter, Berlin (1995)

  15. Saloff-Coste L. (1992). A note on Poincaré, Sobolev and Harnack inequalities. Int. Math. Res. Notices 2: 27–38

    Article  MathSciNet  Google Scholar 

  16. Teplyaev, A.: Harmonic coordinates on fractals with finitelyramified cell structure. Can. J. Math. (to appear)

  17. Teplyaev A. (2000). Gradients on fractals. J. Funct. Anal. 174: 128–154

    Article  MATH  MathSciNet  Google Scholar 

  18. Teplyaev, A.: Energy and Laplacians on the Sierpinski gasket. In: Lapidus, M., van Frankenhuijsen, M. (eds.) Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, Proceedings Symposia in Pure Math., vol. 72, Part 1, Am. Math. Soc., pp. 131–154 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Kigami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kigami, J. Measurable Riemannian geometry on the Sierpinski gasket: the Kusuoka measure and the Gaussian heat kernel estimate. Math. Ann. 340, 781–804 (2008). https://doi.org/10.1007/s00208-007-0169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0169-0

Mathematics Subject Classification (2000)

Navigation