Skip to main content
Log in

KK-theoretic duality for proper twisted actions

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \({\mathcal{A}}\) be a smooth continuous trace algebra, with a Riemannian manifold spectrum X, equipped with a smooth action by a discrete group G such that G acts on X properly and isometrically. Then \({\mathcal{A}}^{-1}\rtimes G \) is KK-theoretically Poincaré dual to \(\big(\mathcal A {\hat {\otimes}_{C_0(X)}} C_\tau (X)\big) \rtimes G\) , where \({\mathcal{A}}^{-1}\) is the inverse of \({\mathcal{A}}\) in the Brauer group of Morita equivalence classes of continuous trace algebras equipped with a group action. We deduce this from a strengthening of Kasparov’s duality theorem. As applications we obtain a version of the above Poincaré duality with X replaced by a compact G-manifold M and Poincaré dualities for twisted group algebras if the group satisfies some additional properties related to the Dirac dual-Dirac method for the Baum- Connes conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anantharaman Delaroche, C., Renault, J.: Amenable groupoids. With a foreword by Georges Skandalis and Appendix B by E. Germain. Monographies de L’Enseignement Mathématique 36. L’Enseignement Mathématique, Geneva, 2000. 196 pp

  2. Atiyah M. and Segal G. (2004). Twisted K-theory. Ukr. Mat. Visn. 1(3): 287–330

    MathSciNet  MATH  Google Scholar 

  3. Baum P., Connes A. and Higson N. (1994). Classifying space for proper actions and K-theory of group C*-algebras. Contemp. Math. 167: 241–291

    MathSciNet  Google Scholar 

  4. Brodzki, J., Mathai, V., Rosenberg, J., Szabo, R.J.: D-branes, RR-fields and duality on noncommutative manifolds. Preprint: arXiv:hep-th/0607020 v1, 4 July (2006)

  5. Crocker D., Kumjian A., Raeburn I. and Williams D.P. (1997). An equivariant Brauer group and actions of groups on C*-algebras. J. Funct. Anal. 146: 151–184

    Article  MATH  MathSciNet  Google Scholar 

  6. Echterhoff S. and Williams D.P. (2001). Locally inner actions on C 0(X)-algebras. J. Oper. Theory 45(1): 131–160

    MATH  MathSciNet  Google Scholar 

  7. Emerson H. (2003). Noncommutative Poincaré duality for boundary actions of hyperbolic groups. J. Reine Angew. Math. 564: 1–33

    MATH  MathSciNet  Google Scholar 

  8. Emerson H. (2003). The Baum-Connes conjecture, noncommutative Poincaré duality and the boundary of the free group. Int. J. Math. Math. Sci. 38: 2425–2445

    Article  MathSciNet  Google Scholar 

  9. Emerson H. and Meyer R. (2007). A descent principle for the Dirac dual Dirac method. Topology 46: 185–209

    Article  MATH  MathSciNet  Google Scholar 

  10. Higson N. and Kasparov G. (2001). E-theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math. 144: 23–74

    Article  MATH  MathSciNet  Google Scholar 

  11. Husemoller, D.: Fibre bundles, third edition. Graduate Texts in Mathematics, 20, xx+353 pp. Springer, New York (1994)

  12. Kaminker J. and Putnam I. (1997). K-theoretic duality of shifts of finite type. Commun. Math. Phys. 187(3): 509–522

    Article  MATH  MathSciNet  Google Scholar 

  13. Kasparov G. (1988). Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91: 147–201

    Article  MATH  MathSciNet  Google Scholar 

  14. Kasparov G. and Skandalis G. (2003). Groups acting properly on “bolic” spaces and the Novikov conjecture. Ann. Math. 158: 165–206

    MATH  MathSciNet  Google Scholar 

  15. Kobayashi S. and Nomizu K. (1996). Foundations of Differential Geometry, Vol. II. Wiley, New York

    Google Scholar 

  16. Meyer R. (2001). Generalized fixed-point algebras and square integrable representations. J. Funct. Anal. 186: 167–195

    Article  MATH  MathSciNet  Google Scholar 

  17. Müller, C., Wockel, C.: Equivalences of smooth and continuous principal bundles with infinite-dimensional structure groups. Preprint, arXiv:math.DG/0604142v1, 6 April (2006)

  18. Packer J. and Raeburn I. (1989). Twisted crossed products of C*-algebras. Proc. Camb. Philos. Soc. 106(2): 293–311

    MATH  MathSciNet  Google Scholar 

  19. Pflaum, M.J.: Analytic and geometric study of stratified spaces. Lecture Notes in Mathematics 1768, Springer, Heidelberg (2000)

  20. Raeburn I. and Williams D.-P. (1985). Pull-backs of C*-algebras and crossed products by certain diagonal actions. Trans. Am. Math. Soc. 287(2): 755–777

    Article  MATH  MathSciNet  Google Scholar 

  21. Tu J.-L. (1999). La conjecture de Novikov pour les fouilletages hyperboliques. K-Theory 16(2): 129–184

    Article  MATH  MathSciNet  Google Scholar 

  22. Tu J.-L. (1999). La conjecture de Baum-Connes pour les feuilletages moyennables. K-Theory 17(3): 215–264

    Article  MATH  MathSciNet  Google Scholar 

  23. Tu, J.-L.: Twisted K-theory and Poincaré duality. Preprint arXiv:math.KT/0609556v1, 20 Sep (2006)

  24. Williams D.P. (1989). The structure of crossed products by smooth actions. J. Austral. Math. Soc. Ser. A 47(2): 226–235

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Echterhoff.

Additional information

This research was supported by the EU-Network Quantum Spaces and Noncommutative Geometry (Contract HPRN-CT-2002-00280) and the Deutsche Forschungsgemeinschaft (SFB 478) and by the National Science and Engineering Research Council of Canada Discovery Grant program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echterhoff, S., Emerson, H. & Kim, H.J. KK-theoretic duality for proper twisted actions. Math. Ann. 340, 839–873 (2008). https://doi.org/10.1007/s00208-007-0171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0171-6

Mathematics Subject Classification (2000)

Navigation