Skip to main content
Log in

Essentially normal Hilbert modules and K-homology

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This paper mainly concerns the essential normality of graded submodules. Essentially all of the basic Hilbert modules that have received attention over the years are p-essentially normal—including the d-shift Hilbert module, the Hardy and Bergman modules of the unit ball. Arveson conjectured graded submodules over the unit ball inherit this property and provided motivations to seek an affirmative answer. Some positive results have been obtained by Arveson and Douglas. However, the problem has been resistant. In dimensions d = 2, 3, this paper shows that the Arveson’s conjecture is true. In any dimension, the paper also gives an affirmative answer in the case of the graded principal submodule. Finally, the paper is associated with K-homology invariants arising from graded quotient modules, by which geometry of the quotient modules and geometry of algebraic varieties are connected. In dimensions d  =  2, 3, it is shown that K-homology invariants determined by graded quotients are nontrivial. The paper also establishes results on p-smoothness of K-homology elements, and gives an explicit expression for K-homology invariant in dimension d  =  2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arveson W. (1998). Subalgebras of C*-algebras III: multivariable operator theory. Acta Math. 181: 159–228

    Article  MATH  MathSciNet  Google Scholar 

  2. Arveson W. (2000). The curvature invariant of a Hilbert module over C[z 1,...,z n ]. J. fur Reine und Angew Math. 522: 173–236

    MATH  MathSciNet  Google Scholar 

  3. Arveson W. (2002). The dirac operator of a commuting d-tuple. J. Funct. Anal. 189: 53–79

    Article  MATH  MathSciNet  Google Scholar 

  4. Arveson, W.: p-Summable commutators in dimmension d. J. Oper. Theory 54, 101–117. arXiv: math.OA/0308104 (2005)

    Google Scholar 

  5. Arveson, W.: Quotients of standard Hilbert modules. to appear in Trans. AMS, arXiv: math.OA/ 0502388 (2005)

  6. Arveson, W.: Several problems in operator theory (2003). http://www.math.berkeley.edu/~arveson

  7. Arveson, W.: (I). Operator theory and the K-homology of algebraic varieties; (II). Standard Hilbert Modules: the Fredholm property. 2005–2006 Erdos Colloquim, University of Florida (2006)

  8. Atiyah, M., Segal, G.: A survey of K-theory. In: Proceedings of the Conference on K-Theory and Operator Algebra, Athens, Georgia, Springer, Heidelberg. Lecture Notes Series 575, pp. 1–9, (1997)

  9. Brown L., Douglas R. and Fillmore P. (1977). Extension of C*-algebras and K-homology. Ann. Math. 105: 265–324

    Article  MathSciNet  Google Scholar 

  10. Brown L., Douglas R. and Fillmore P. (1973). Unitary Equivalence Modulo the Compact Operators and Extensions of C*-algebra, Lecture Notes in Mathematics, 345. Springer, Heidelberg

    Google Scholar 

  11. Brown, L.: The universal coefficient theorem for Ext and quasidiagonality. In: Proceedings of International Conference on Operator Algebras and Group Representations, Neptun, Romania (1980)

  12. Chen, X., Guo, K.: Analytic Hilbert Modules, π-Chapman & Hall/CRC Reserarch Notes in Mathematics, vol. 433 (2003)

  13. Connes A. (1994). Noncommutative Geometry. Academic, San Diego

    MATH  Google Scholar 

  14. Curto, R.: Application of several complex variables to multiparameter spectral theory. In: Conway, J.B., Morrel, B.B. (eds.) Surveys of Some Results in Operator theory, Pitman Research Notes in Math. vol. 192 (1988)

  15. Curto R. (1981). Fredholm and invertible n-tuple of operators. the deformation problem. Trans. AMS 266: 129–159

    Article  MATH  MathSciNet  Google Scholar 

  16. Douglas, R.: Essentially reductive Hilbert modules. J. Oper. Theory. 55, 117–133 (2006) arXiv: math.OA/0404167

    Google Scholar 

  17. Douglas, R.: A new kind of index theorem. In: Analysis, Geometry and Topology of Elliptic Operators (Roskilde, Denmark, 2005), 2006, World Scientific Publishing, Singapore. arxiv: math. FA/0507542, (2005)

  18. Douglas, R.: Essentially Reductive Hilbert Modules II. arXiv:math.FA/0607722

  19. Douglas, R.: Invariants for Hilbert modules. In: Proceedings of Symposia in Pure Mathematics, vol. 51, Part I, pp. 179–196 (1990)

  20. Douglas, R.: On the smoothness of Ext. In: Topics in Modern Operator Theory. Birkhuser Verlag, pp. 63–69 (1981)

  21. Douglas, R., Paulsen, V.: Hilbert modules over function algebras. Pitman Research Notes in Mathematics, vol. 217 (1989)

  22. Douglas R., Paulsen V., Sah C. and Yan K. (1995). Algebraic reduction and rigidity for Hilbert modules. Am. J. Math. 117: 75–92

    Article  MATH  MathSciNet  Google Scholar 

  23. Drury S. (1978). A generalization of von Neumann’s inequality to the complex ball. Proc. Am. Math. Soc. 68: 300–304

    Article  MATH  MathSciNet  Google Scholar 

  24. Douglas R. and Voiculescu D. (1981). On the smoothness of sphere extensions. J. Oper. Theory 6: 103–111

    MATH  MathSciNet  Google Scholar 

  25. Douglas R. and Yan K. (1993). Hilbert-Samuel polynomials for Hilbert modules. Indiana Univ. Math. J. 42: 811–820

    Article  MATH  MathSciNet  Google Scholar 

  26. Fang X. (2006). The Fredholm index of a pair of commting operators. Geom. Funct. Anal. 16: 367–402

    Article  MATH  MathSciNet  Google Scholar 

  27. Fang X. (2003). Hilbert polynomials and Arveson’s curvature invariant. J. Funct. Anal. 198: 445–464

    Article  MATH  MathSciNet  Google Scholar 

  28. Fang X. (2004). Samuel multiplicity and the structure of semi-Fredholm operators. Adv. Math. 186: 411–437

    Article  MATH  MathSciNet  Google Scholar 

  29. Guo K. (1999). Characteristic spaces and rigidity for analytic Hilbert modules. J. Funct. Anal. 163: 133–151

    Article  MATH  MathSciNet  Google Scholar 

  30. Guo K. (2000). Equivalence of Hardy submodules generated by polynomials. J. Funct. Anal. 178: 343–371

    Article  MATH  MathSciNet  Google Scholar 

  31. Guo K. (2004). Defect operator for submodules of H 2 d . J. Reine Angew. Math. 573: 181–209

    MATH  MathSciNet  Google Scholar 

  32. Greene D., Richter S. and Sundberg C. (2002). The structure of inner multiplications on spaces with complete Nevanlinna Pick kernels. J. Funct. Anal. 194: 311–331

    Article  MATH  MathSciNet  Google Scholar 

  33. Gleason J., Richter S. and Sundberg C. (2005). On the index of invariant subspaces in spaces of analytic functions of several complex variables. J. Reine. Angew. Math. 587: 49–76

    MATH  MathSciNet  Google Scholar 

  34. Harris J. (1992). Algebraic Geometry, A First Course. Springer, New York

    MATH  Google Scholar 

  35. Taylor J. (1970). A joint spectrum for several commuting operators. J. Funct. Anal. 6: 172–191

    Article  MATH  Google Scholar 

  36. Taylor J. (1970). The analytic functional calculus for several commuting operators. Acta Math. 125: 1–38

    Article  MATH  MathSciNet  Google Scholar 

  37. Yang R. (1999). The Berger–Shaw theorem in the Hardy module over the bidisk. J. Oper. Theory 42: 379–404

    MATH  Google Scholar 

  38. Zariski, O., Samuel, P.: Commutative algebra. Vol. (I), (II), Van Nostrand, New York (1958/1960)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunyu Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, K., Wang, K. Essentially normal Hilbert modules and K-homology. Math. Ann. 340, 907–934 (2008). https://doi.org/10.1007/s00208-007-0175-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0175-2

Mathematics Subject Classification (2000)

Navigation