Skip to main content
Log in

Proof of the bandwidth conjecture of Bollobás and Komlós

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we prove the following conjecture by Bollobás and Komlós: For every γ > 0 and integers r ≥ 1 and Δ, there exists β > 0 with the following property. If G is a sufficiently large graph with n vertices and minimum degree at least ((r − 1)/r + γ)n and H is an r-chromatic graph with n vertices, bandwidth at most β n and maximum degree at most Δ, then G contains a copy of H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbasi, S.: Embedding low bandwidth bipartite graphs, unpublished

  2. Abbasi S.: How tight is the Bollobás–Komlós conjecture?. Graphs Combin 16(2), 129–137 (2000)

    MATH  MathSciNet  Google Scholar 

  3. Aigner M., Brandt S.: Embedding arbitrary graphs of maximum degree two. J. Lond. Math. Soc. (2) 48(1), 39–51 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alon N., Fischer E.: 2-Factors in dense graphs. Discrete Math. 152(1–3), 13–23 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alon N., Yuster R.: Almost H-factors in dense graphs. Graphs Combin. 8(2), 95–102 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alon N., Yuster R.: H-factors in dense graphs. J. Combin. Theory Ser. B 66(2), 269–282 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Böttcher, J., Pruessmann, K.P., Taraz, A., Würfl, A.: Bandwidth, treewidth, separators, expansion, and universality, Electron. Notes Discrete Math. (2008) (to appear)

  8. Böttcher J., Schacht M., Taraz A.: Spanning 3-colourable subgraphs of small bandwidth in dense graphs. J. Combin. Theory Ser. B 98(4), 752–777 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chung, F.R.K.: Labelings of graphs, Selected Topics in Graph Theory, vol. 3, pp. 151–168. Academic Press, London (1988)

  10. Chvátal V., Rödl V., Szemerédi E., Trotter W.T. Jr: The Ramsey number of a graph with bounded maximum degree. J. Combin. Theory Ser. B 34(3), 239–243 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Corradi K., Hajnal A.: On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hungar. 14, 423–439 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  12. Csaba, B., Shokoufandeh, A., Szemerédi, E.: Proof of a conjecture of Bollobás and Eldridge for graphs of maximum degree three. Combinatorica 23(1), 35–72 (2003), Paul Erdős and his mathematics (Budapest 1999)

    Google Scholar 

  13. Czygrinow A., Kierstead H.A.: 2-factors in dense bipartite graphs. Discrete Math. 257(2–3), 357–369 (2002) Kleitman and combinatorics: a celebration (Cambridge, MA, 1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Diestel R.: Graph theory, 3rd edn., Graduate Texts in Mathematics, vol. 173. Springer, Berlin (2005)

    Google Scholar 

  15. Dirac G.A.: Some theorems on abstract graphs. Proc. London Math. Soc. (3) 2, 69–81 (1952)

    Article  MathSciNet  Google Scholar 

  16. Erdős, P.: Problem 9, Theory of Graphs and its Applications. In: Fiedler, M. (ed.) Proceedings of Symposium on Smolenice 1963, p. 159. Publ. House Czechoslovak Academic Science, Prague (1964)

  17. Erdös P., Stone A.H.: On the structure of linear graphs. Bull. Am. Math. Soc. 52, 1087–1091 (1946)

    Article  MATH  Google Scholar 

  18. Hajnal, A., Szemerédi, E.: Proof of a conjecture of P. Erdős, Combinatorial theory and its applications, II. In: Proceedings of Colloq., Balatonfüred 1969, pp. 601–623. North-Holland, Amsterdam (1970)

  19. Hàn, H.: Einbettungen bipartiter Graphen mit kleiner Bandbreite. Master’s thesis, Humboldt-Universität zu Berlin, Institut für Informatik, Fall (2006)

  20. Komlós J.: The blow-up lemma. Combin. Probab. Comput. 8(1–2), 161–176 (1999) Recent trends in combinatorics (Mátraháza, 1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Komlós J.: Tiling Turán theorems. Combinatorica 20(2), 203–218 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Komlós J., Sárközy G.N., Szemerédi E.: Blow-up lemma. Combinatorica 17(1), 109–123 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Komlós J., Sárközy G.N., Szemerédi E.: Proof of the Seymour conjecture for large graphs. Ann. Comb. 2(1), 43–60 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Komlós J., Sárközy G.N., Szemerédi E.: Proof of the Alon–Yuster conjecture. Discrete Math. 235(1–3), 255–269 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Komlós J., Sárközy G.N., Szemerédi E.: Spanning trees in dense graphs. Combin. Probab. Comput. 10(5), 397–416 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Komlós, J., Simonovits, M.: Szemerédi’s regularity lemma and its applications in graph theory, Combinatorics, Paul Erdős is eighty, vol. 2 (Keszthely, 1993), Bolyai Soc. Math. Stud., vol. 2, pp. 295–352. János Bolyai Mathematical Society, Budapest (1996)

  27. Kühn, D., Osthus, D.: The minimum degree threshold for perfect graph packings. Combinatorica (to appear)

  28. Kühn D., Osthus D.: Spanning triangulations in graphs. J. Graph. Theory 49(3), 205–233 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kühn, D., Osthus, D.: Critical chromatic number and the complexity of perfect packings in graphs. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, 22–26 January 2006, pp. 851–859. ACM Press (2006)

  30. Kühn D., Osthus D., Taraz A.: Large planar subgraphs in dense graphs. J. Combin. Theory Ser. B 95(2), 263–282 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rödl V., Ruciński A.: Perfect matchings in ε-regular graphs and the blow-up lemma. Combinatorica 19(3), 437–452 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Seymour, P.: Problem section, Combinatorics. In: McDonough, T.P., Mavron, V.C. (eds.) Proceedings of British Combinatorial Conference 1973.Lecture Note Ser., No. 13, pp. 201–204. London Mathematical Society, Cambridge University Press, London (1974)

  33. Shokoufandeh A., Zhao Y.: Proof of a tiling conjecture of Komlós. Random Struct. Algorithms 23(2), 180–205 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Szemerédi, E.: Regular partitions of graphs, Problèmes combinatoires et théorie des graphes (Orsay, 1976), Colloques Internationaux CNRS, vol. 260, pp. 399–401. CNRS (1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anusch Taraz.

Additional information

J. Böttcher and A. Taraz were partially supported by DFG grant TA 309/2-1. M. Schacht was partially supported by DFG grant SCHA 1263/1-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttcher, J., Schacht, M. & Taraz, A. Proof of the bandwidth conjecture of Bollobás and Komlós. Math. Ann. 343, 175–205 (2009). https://doi.org/10.1007/s00208-008-0268-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0268-6

Mathematics Subject Classification (2000)

Navigation