Skip to main content
Log in

The Cauchy–Riemann equations on product domains

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We establish the L 2 theory for the Cauchy–Riemann equations on product domains provided that the Cauchy–Riemann operator has closed range on each factor. We deduce regularity of the canonical solution on (p, 1)-forms in special Sobolev spaces represented as tensor products of Sobolev spaces on the factors of the product. This leads to regularity results for smooth data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Barrett D.: Regularity of the Bergman projection on domains with transverse symmetries. Math. Ann. 258, 441–446 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett D.: Behavior of the Bergman projection on the Diederich-Fornaess worm. Acta Math. 168, 1–10 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett D., Vassiliadou S.K.: The Bergman kernel on the intersection of two balls in \({\mathbb{C}^2}\). Duke Math. J. 120, 441–467 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertrams, J.: Randregularität von Lösungen der \({\overline\partial}\)-Gleichung auf dem Polyzylinder und zweidimensionalen analytischen Polyedern. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn (1986)

  5. Boas H.P., Straube E.J.: Equivalence of regularity for the Bergman projection and the \({\overline \partial}\)-Neumann operator. Manuscr. Math. 67(1), 25–33 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boas H.P., Straube E.J.: Sobolev estimates for the \({\overline\partial}\)-Neumann operator on domains in \({{\mathbb{C}}^n}\) admitting a defining function that is plurisubharmonic on the boundary. Math. Zeit. 206, 81–88 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brüning L.M.: Hilbert complexes. J. Funct. Anal. 108(1), 88–132 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Catlin D.: Subelliptic estimates for the \({\overline\partial}\)-Neumann problem on pseudoconvex domains. Ann. Math. 126, 131–191 (1987)

    Article  MathSciNet  Google Scholar 

  9. Chakrabarti, D.: Spectrum of the complex Laplacian in product domains. Proc. Am. Math. Soc. (to appear). arxiv.org

  10. Chen, S.-C., Shaw, M.-C.: Partial differential equations in several complex variables. AMS/IP Studies in Advanced Mathematics, vol. 19. American Mathematical Society, Providence. International Press, Boston (2001)

  11. de Rham G.: Variétés différentiables. Formes, courants, formes harmoniques. Hermann et Cie, Paris (1955)

    MATH  Google Scholar 

  12. Ehsani D.: Solution of the \({\overline\partial}\)-Neumann problem on a non-smooth domain. Indiana Univ. Math. J. 52(3), 629–666 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ehsani D.: Solution of the \({\overline\partial}\)-Neumann problem on a bi-disc. Math. Res. Lett. 10(4), 523–533 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Ehsani D.: The \({\overline\partial}\)-Neumann problem on product domains in \({\mathbb{C}^n}\). Math. Ann. 337, 797–816 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fu S.: Spectrum of the \({\overline{\partial}}\)-Neumann Laplacian on polydiscs. Proc. Am. Math. Soc. 135, 725–730 (2007)

    Article  MATH  Google Scholar 

  16. Folland, G.B., Kohn, J.J.: The Neumann problem for the Cauchy-Riemann complex. Annals of Mathematics Studies, No. 75. Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1972)

  17. Griffith P., Harris J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    Google Scholar 

  18. Hörmander L.: L 2 estimates and existence theorems for the \({\bar\partial}\) operator. Acta Math. 113, 89–152 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hörmander L.: The null space of the \({\overline\partial}\)-Neumann operator. Ann. Inst. Fourier (Grenoble) 54(5), 1305–1369 (2004)

    MathSciNet  Google Scholar 

  20. Horváth J.: Topological vector spaces and distributions, vol. I. Addison-Wesley, Reading (1966)

    MATH  Google Scholar 

  21. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, vols. I and II. Reprint of the 1983 original. Graduate Studies in Mathematics, vols. 15 and 16. American Mathematical Society, Providence (1997)

  22. Kohn J.J.: Harmonic integrals on strongly pseudoconvex manifolds, I. Ann. Math. 78, 112–148 (1963)

    Article  MathSciNet  Google Scholar 

  23. Kohn J.J.: Global regularity for \({\overline\partial}\) on weakly pseudoconvex manifolds. Trans. Am. Math. Soc. 181, 273–292 (1973)

    MathSciNet  MATH  Google Scholar 

  24. Landucci, M.: Uniform bounds on derivatives for the \({\overline{\partial}}\)-problem in the polydisk. In: Proceedings Sympos. Pure Math. vol. XXX Part I, pp. 177–180. Williamstown, MA (1975)

  25. Michel J., Shaw M.-C.: The \({\overline\partial}\) problem on domains with piecewise smooth boundaries with applications. Trans. Am. Math. Soc. 351(11), 4365–4380 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mitrea, D., Mitrea, M., Taylor, M.: Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds. Mem. Am. Math. Soc. 150, no. 713 (2001)

    Google Scholar 

  27. Nickerson H.K.: On the complex form of the Poincaré lemma. Proc. Am. Math. Soc. 9, 183–188 (1958)

    MathSciNet  Google Scholar 

  28. Nijenhuis A., Woolf W.B.: Some integration problems in almost-complex and complex manifolds. Ann. Math. 77(2), 424–489 (1963)

    Article  MathSciNet  Google Scholar 

  29. Shaw M.-C.: Global solvability and regularity for \({\overline\partial}\) on an annulus between two weakly pseudoconvex domains. Trans. Am. Math. Soc. 291, 255–267 (1985)

    MATH  Google Scholar 

  30. Shaw, M.-C.: Boundary value problems on Lipschitz domains in \({\mathbb{R}^n}\) or \({\mathbb{C}^n}\). In: Geometric Analysis of PDE and Several Complex Variables, pp. 375–404. Contemp. Math., vol. 368. Amer. Math. Soc., Providence (2005)

  31. Shaw, M.-C.: The closed range property for \({\overline{\partial}}\) on domains with pseudoconcave boundary. In: Proceedings of the Complex Analysis Conference, Fribourg, Switzerland (2008)

  32. Schaefer, H.H., Wolff, M.P.: Topological vector spaces, 2nd edn. In: Graduate Texts in Mathematics, vol. 3. Springer-Verlag, New York (1999)

  33. Weidmann, J.: Linear operators in Hilbert spaces. In: Graduate Texts in Mathematics, vol. 68. Springer-Verlag, New York (1980)

  34. Zucker S.: L 2 cohomology of warped products and arithmetic groups. Invent. Math. 70(2), 169–218 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debraj Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, D., Shaw, MC. The Cauchy–Riemann equations on product domains. Math. Ann. 349, 977–998 (2011). https://doi.org/10.1007/s00208-010-0547-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0547-x

Keywords

Navigation