Skip to main content
Log in

Sharp regularity estimates for second order fully nonlinear parabolic equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove sharp regularity estimates for viscosity solutions of fully nonlinear parabolic equations of the form

$$\begin{aligned} u_t - F\left( D^2u, Du, X, t\right) = f(X,t) \quad \text{ in } \quad Q_1, \end{aligned}$$
(Eq)

where F is elliptic with respect to the Hessian argument and \(f \in L^{p,q}(Q_1)\). The quantity \(\Xi (n, p, q) := \frac{n}{p}+\frac{2}{q}\) determines to which regularity regime a solution of (Eq) belongs. We prove that when \(1< \Xi (n,p,q) < 2-\epsilon _F\), solutions are parabolically \(\alpha \)-Hölder continuous for a sharp, quantitative exponent \(0< \alpha (n,p,q) < 1\). Precisely at the critical borderline case, \(\Xi (n,p,q)= 1\), we obtain sharp parabolic Log-Lipschitz regularity estimates. When \(0< \Xi (n,p,q) <1\), solutions are locally of class \(C^{1+ \sigma , \frac{1+ \sigma }{2}}\) and in the limiting case \(\Xi (n,p,q) = 0\), we show parabolic \(C^{1, \text {Log-Lip}}\) regularity estimates provided F has “better” a priori estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The universal constant \(\mathfrak {p}_0\) is one which gives the minimal range for which the Aleksandrov–Bakelman–Pucci–Krylov–Tso maximum principle holds for \(L^p\)-viscosity solutions provided \(p> \mathfrak {p}_0\) (cf. [4, Section 2] and [5] for more details).

  2. Here \(\varepsilon \) is the Escauriaza’s universal constant which provides the minimal range which the Harnack inequality (resp. Hölder regularity) holds for viscosity solutions to fully nonlinear elliptic equations, since \(p\ge n-\varepsilon \) (see [6] for more details).

References

  1. Caffarelli, L.A., Stefanelli, U.: A counterexample to \(C^{2, 1}\) regularity for parabolic fully nonlinear equations. Commun. Partial Differ. Equ. 33(7–9), 1216–1234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Crandall, M.G., Fok, P.-K., Kocan, M., Swiech, A.: Remarks on nonlinear uniformly parabolic equations. Indiana Univ. Math. J. 47(4), 1293–1326 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Crandall, M.G., Kocan, M., Lions, P.-L., Swiech, A.: Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations. Electron. J. Differ. Equ. 1999(24), 1–20 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Crandall, M.G., Kocan, M., Swiech, A.: \(L^p\)-theory for fully nonlinear uniformly parabolic equations. Commun. Partial Differ. Equ. 25(11–12), 1997–2053 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Crandall, M.G., Swiech, A.: A note on generalized maximum principles for elliptic and parabolic PDE. Evolution equations, pp. 121-127, Lecture Notes in Pure and Appl. Math., vol. 234. Dekker, New York (2003)

  6. Escauriaza, Luis: \(W^{2, n}\) a priori estimates for solutions to fully non-linear elliptic equations. Indiana Univ. Math. J. 42(2), 413–423 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35(3), 333–363 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Imbert, C., Silvestre, L.: An introduction to fully nonlinear parabolic equations. In: Boucksom, S., Eyssidieux, P., Guedj, V. (eds) An Introduction to the Kähler-Ricci Flow. Lecture Notes in Mathematics, vol. 2086, pp. 7–88. Springer (2013)

  9. Kim, D.: Elliptic and parabolic equations with measurable coefficients in \(L_p\)-spaces with mixed norms. Methods Appl. Anal. 15(4), 437–468 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Kim, D.: Parabolic equations with partially BMO coefficients and boundary value problems in Sobolev spaces with mixed norms. Potential Anal. 33, 17–46 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Krylov, N.V.: Boundedly nonhomogeneous elliptic and parabolic equations. Izv. Akad. Nak. SSSR. Ser. Mat. 46, 487–523 (1982) [English transl. in Math USSR Izv. 20, 459–492 (1983)]

  12. Krylov, N.V.: Boundedly nonhomogeneous elliptic and parabolic equations in a domain. Izv. Akad. Nak. SSSR. Ser. Mat. 47, 75–108 (1983) [English transl. in Math USSR Izv. 22, 67–97 (1984)]

  13. Krylov, N.V.: Lectures on elliptic and parabolic equations in Sobolev spaces. Graduate Studies in Mathematics. American Mathematical Society, USA (2008)

  14. Krylov, N.V.: Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms. J. Funct. Anal. 250, 521–558 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krylov, N.V., Safonov, M.V.: An estimate of the probability that a diffusion process hits a set of positive measure. Dokl. Akad. Nauk. SSSR 245, 235–255 (1979) [English translation in Soviet Math Dokl. 20, 235–255 (1979)]

  16. Krylov, N.V., Safonov, M.V.: Certain properties of solutions of parabolic equations with measurable coefficients. Izvestia Akad Nauk. SSSR 40, 161–175 (1980)

    Google Scholar 

  17. Sheng, W., Wang, X.-J.: Regularity and singularity in mean curvature flow. Trends in Partial Differential Equations. Adv. Lect. Math., pp. 399–436 (2010)

  18. Teixeira, E.V.: Universal moduli of continuity for solutions to fully nonlinear elliptic equations. Arch. Ration. Mech. Anal. 211(3), 911–927 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Teixeira, E.V., Urbano, J.M.: A geometric tangential approach to sharp regularity for degenerate evolution equations. Anal. PDE 7(3), 733–744 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, L.: On the regularity theory of fully nonlinear parabolic equations: I. Commun. Pure Appl. Math. XLV, 27–76 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, L.: On the regularity theory of fully nonlinear parabolic equations: II. Commun. Pure Appl. Math. XLV, 141–178 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This article is part of the first author’s Ph.D thesis. He would like to thank the Department of Mathematics at Universidade Federal do Ceará for fostering a pleasant and productive scientific atmosphere, which has benefited a lot the final outcome of this current project. This work has been partially supported by Capes and CNPq, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo V. Teixeira.

Additional information

Communicated by Y. Giga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.V., Teixeira, E.V. Sharp regularity estimates for second order fully nonlinear parabolic equations. Math. Ann. 369, 1623–1648 (2017). https://doi.org/10.1007/s00208-016-1506-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1506-y

Mathematics Subject Classification

Navigation