Skip to main content
Log in

Smith theory and geometric Hecke algebras

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In 1960 Borel proved a “localization” result relating the rational cohomology of a topological space X to the rational cohomology of the fixed points for a torus action on X. This result and its generalizations have many applications in Lie theory. In 1934, Smith proved a similar localization result relating the mod p cohomology of X to the mod p cohomology of the fixed points for a \({\mathbb {Z}}/p\)-action on X. In this paper we study \({\mathbb {Z}}/p\)-localization for constructible sheaves and functions. We show that \({\mathbb {Z}}/p\)-localization on loop groups is related via the geometric Satake correspondence to some special homomorphisms that exist between algebraic groups defined over a field of small characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Atiyah, M., Bott, R.: The moment map and equivariant cohomology. Topology 23, 1–28 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernstein, J., Lunts, V.: Equivariant Sheaves and Functors. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  3. Borel, A.: Seminar on transformation groups (AM-46). Annals of Mathematics Studies. Princeton University Press (1960)

  4. Borel, A., de Siebenthal, J.: Les sous-groupes de rang maximum des groupes de Lie clos. Comment. Math. Helv. 23, 200–221 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borel, A., Tits, J.: Groupes réductifs. Inst. Hautes Études Sci. Publ. Math. 27, 55–150 (1965)

    Article  MATH  Google Scholar 

  6. Braden, T.: Hyperbolic localization of intersection cohomology. Transform. Groups 8, 209–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bredon, G.: Fixed point sets of actions on Poincaré duality spaces. Topology 12, 159–175 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, T., Skjelbred, T.: Group actions on Poincaré duality spaces. Bull. Am. Math. Soc. 78, 1024–1026 (1972)

    Article  MATH  Google Scholar 

  9. Goresky, M., Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131, 25–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jin, X.: Holomorphic Lagrangian branes correspond to perverse sheaves. Geom. Topol. 19, 1685–1735 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kac, V.: Automorphisms of finite order of semisimple Lie algebras. Funkts. Anal. Prilozh. 3, 252–254 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kashiwara, M., Schapira, P.: Sheaves on Manifolds. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  13. Liebeck, M., Seitz, G.: The maximal subgroups of positive dimension in exceptional algebraic groups. Memoirs of the American Mathematical Society (2004). https://doi.org/10.1090/memo/0802

  14. Mirković, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. 166, 95–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nadler, D.: Perverse sheaves on real loop Grassmannians. Invent. Math. 159, 1–73 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nadler, D., Zaslow, E.: Constructible sheaves and the Fukaya category. J. Am. Math. Soc. 22, 233–286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Quillen, D.: The spectrum of an equivariant cohomology ring. Ann. Math. 94, 549–602 (1971)

  18. Schapira, P.: Operations on constructible functions. J. Pure Appl. Algebra 72, 83–93 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shinoda, K.: The conjugacy classes of type \((\rm F_4)\) over finite fields of characteristic 2. J. Fac. Sci. Univ. Tokyo 21, 133–159 (1974)

  20. Smith, P.: A theorem on fixed points for periodic transformations. Ann. Math. 35(3), 572–578 (1934)

  21. Sopkina, E.: Classification of all connected subgroup schemes of a reductive group containing a split maximal torus. J. K-Theory 3, 103–122 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Spaltenstein, N.: Nilpotent classes in Lie algebras of type \(\rm F_4\) over fields of characteristic 2. J. Fac. Sci. Univ. Tokyo 30, 517–524 (1984)

    MathSciNet  MATH  Google Scholar 

  23. Steinberg, R.: Representations of algebraic groups. Nagoya Math. J. 22, 33–56 (1963)

Download references

Acknowledgements

I thank Florian Herzig, Gopal Prasad, and Ting Xue for help with algebraic groups. In particular, most of the material in Sect. 3.4.5 I learned from Ting. While developing these ideas I benefited from discussions with Paul Goerss, David Nadler, and Zhiwei Yun. I thank Sam Evens for correcting some microlocal mistakes in an earlier version of this paper, and Akshay Venkatesh for improving the proof of Theorem 3.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Treumann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treumann, D. Smith theory and geometric Hecke algebras. Math. Ann. 375, 595–628 (2019). https://doi.org/10.1007/s00208-019-01860-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01860-1

Navigation