Skip to main content
Log in

Triple product p-adic L-functions for balanced weights

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We construct p-adic triple product L-functions that interpolate (square roots of) central critical L-values in the balanced region. Thus, our construction complements that of Harris and Tilouine. There are four central critical regions for the triple product L-functions and two opposite settings, according to the sign of the functional equation. In the first case, three of these regions are of interpolation, having positive sign; they are called the unbalanced regions and one gets three p-adic L-functions, one for each region of interpolation (this is the Harris-Tilouine setting). In the other setting there is only one region of interpolation, called the balanced region: we produce the corresponding p-adic L-function. Our triple product p-adic L-function arises as p-adic period integrals interpolating normalizations of the local archimedean period integrals. The latter encode information about classical representation theoretic branching laws. The main step in our construction of p-adic period integrals is showing that these branching laws vary in a p-adic analytic fashion. This relies crucially on the Ash-Stevens theory of highest weight representations over affinoid algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. The fact that the central characters are the inverse of the usual ones is due to the fact that the \(L^{2}\)-automorphic forms on B that appear in Sect. 3.2 enjoy the equivariance property \(f\left( xg\right) =f\left( x\right) \), as opposite to the usual convention \(f\left( gx\right) =f\left( x\right) \). Thus we consider right \(\mathbf {B}^{\times }\left( \mathbb {A} _{f}\right) \) action \(\left( fu\right) \left( x\right) :=f\left( ux\right) \) on them, rather than the usual left action \(\left( uf\right) \left( x\right) :=f\left( xu^{-1}\right) \). The rule \(f^{*}\left( x\right) :=f\left( x^{-1}\right) \), which satisfies \(\left( fu\right) ^{*}=uf^{*}\), exchange the two spaces, but the central characters of the corresponding spaces are reversed.

  2. Indeed note that \(K_{1}\pi K_{2}\) is compact, being the image of \( K_{1}\times K_{2}\) by means of the continuous map given by \(\left( x,y\right) \mapsto x\pi y\). Since \(K_{1}\) is open, \(K_{1}\pi K_{2} =\bigsqcup \nolimits _{i}K_{1}\pi _{i}\) is an open covering which, by compactness, admits a finite refinement.

  3. In order to determine \(\lambda \), note that

    $$\begin{aligned} \lambda \left\langle P,\Delta _{k_{1},k_{2},k_{3}}\right\rangle _{k_{1},k_{2},k_{3}}=\left\langle P,\delta _{3}^{*}\left( \Delta _{k_{1}+1,k_{2}+1,k_{3}}\right) \right\rangle _{k_{1}+1,k_{2}+1,k_{3}}=\left\langle \delta _{3}P,\Delta _{k_{1}+1,k_{2}+1,k_{3}}\right\rangle _{k_{1}+1,k_{2}+1,k_{3}}. \end{aligned}$$

    A good choice is to take \(P=Y_{1}^{k_{1}}\otimes X_{2}^{\underline{k} _{3}^{*}}Y_{2}^{\underline{k}_{1}^{*}}\otimes X_{3}^{k_{3}}\).

  4. We write \(V\otimes _{\iota }W\) (resp. \(V\otimes W\)) to denote \(V\otimes W\) with the inductive (resp. projective) tensor topology.

  5. The trilinear form \(t_{\underline{k}}\) satisfies the invariance formula

    $$\begin{aligned} t_{\underline{k}}\left( \varphi _{1}u,\varphi _{2}u,\varphi _{3}u\right) = \mathrm {Nrd}_{f}\left( u\right) ^{\underline{k}^{*}}t_{\underline{k} }\left( g_{1},\varphi _{2},\varphi _{3}\right) \end{aligned}$$

    and we have \(\mathrm {Nrd}_{f}\left( u\right) =1\) for \(u\in K^{\#}\) or \(u\in \omega _{p}^{-1}K^{\#}\omega _{p}\).

  6. We have \(\mathrm {Nrd}_{f}\left( \widehat{\omega }_{p}\right) =\left| \mathrm {nrd}\left( \widehat{\omega }_{p}\right) \right| _{\mathbb {A} _{f}}^{-1}=\left| p\right| _{p}^{-1}=p.\)

  7. Via the morphism \(\mathcal {O}_{\mathcal {C}_{N,\varepsilon }}\rightarrow \mathcal {O}_{\mathcal {C}_{N,\varepsilon }^{\le h}}\) which sends a Hecke operator acting on finite slope overconvergent modular forms to the Hecke operator acting on overconvergent modular forms of slope \(\le h\).

  8. By a special unramified representation, we mean the twist by an unramified character of the special representation. Of course, this is a ramified representation of conductor 1.

  9. There is a typos in [43, Proposition 4.4]: the quantity \((1-\varepsilon )\) should be \((1+\varepsilon )\), which is 2 in our case, in accordance with the Prasad’s results.

References

  1. Andreatta, F., Iovita, A.: Triple product \(p\)-adic \(L\)-functions associated to finite slope \(p\)-adic modular forms. Preprint (2019). http://www.mat.unimi.it/users/andreat/research.html

  2. Andreatta, F., Iovita, A., Pilloni, V.: On overconvergent Hilbert modular cusp forms. Astérisque 382, 163–193 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Andreatta, F., Iovita, A., Stevens, G.: Overconvergent Eichler–Shimura isomorphisms. J. Inst. Math. Jussieu 14, 221–274 (2015)

    Article  MathSciNet  Google Scholar 

  4. Ash, A., Stevens, G.: \(p\)-adic deformations of arithmetic cohomology. Submitted Preprint (2008). https://www2.bc.edu/avner-ash/Papers/Ash-Stevens-Oct-07-DRAFT-copy.pdf

  5. Bellaïche, J., Chenevier, G.: Families of Galois representations and Selmer groups. Astérisque 324, 1–314 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Bertolini, M., Seveso, M.A., Venerucci, R.: On exceptional zeros of triple product \(p\)-adic \(L\)-functions. In progress. https://sites.google.com/site/sevesomarco/publications

  7. Böcherer, S., Schulze-Pillot, R.: On central critical values of triple product L-functions. In: Sinnou D (ed) Number theory (Paris, 1994–1995), Cambridge University Press, Lond. Math. Soc. Lect. Note Ser. 235, 1–46 (1996)

  8. Carayol, H.: Sur les représentations \(l\) -adiques associées aux formes modulaires de Hilbert. Ann. Sci. Ecole Norm. Sup. 19(3), 409–468 (1986)

    Article  MathSciNet  Google Scholar 

  9. Chenevier, G.: Familles \(p\)-adiques de formes automorphes pour \(\mathbf{GL}_{n}\). J. Reine Angew. Math. 570, 143–217 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Chenevier, G.: Une correspondance de Jacquet–Langlands \(p\)-adique. Duke Math. J. 126, 161–194 (2005)

    Article  MathSciNet  Google Scholar 

  11. Coleman, R.F.: \(p\)-adic Banach spaces and families of modular forms. Invent. Math. 127, 417–479 (1997)

    Article  MathSciNet  Google Scholar 

  12. Coleman, R.F., Edixhoven, B.: On the semi-simplicity of the \(U_{p}\)-operator on modular forms. Math. Ann. 310, 119–127 (1998)

    Article  MathSciNet  Google Scholar 

  13. Coleman, R.F., Mazur, B.: The eigencurve. In: Galois representations in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser. 254, Cambridge Univ. Press, Cambridge (1998)

    Google Scholar 

  14. Collins, D.J.: Anticyclotomic \(p\)-adic\(L\) functions and Ichino’s formula, PhD thesis

  15. Darmon, H., Rotger, V.: Diagonal cycles and Euler systems I: a \(p\)-adic Gross–Zagier formula. Ann. Scient. Ec. Norm. Sup., 4e ser 47(4), 779–832 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Darmon, H., Rotger, V.: Diagonal cycles and Euler systems II: the Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-series. J. Am. Math. Soc. 30, 601–672 (2017)

    Article  Google Scholar 

  17. Dimitrov, M., Nyssen, L.: Test vectors for trilinear forms when at least one representation is not supersingular. Manuscr. Math. 133, 479–504 (2010)

    Article  Google Scholar 

  18. Emerton, E., Pollack, R., Weston, T.: Variation of Iwasawa invariants in Hida families. Invent. Math. 163, 523–580 (2006)

    Article  MathSciNet  Google Scholar 

  19. Fouquet, O., Ochiai, T.: Control theorems for Selmer groups of nearly ordinary deformations. J. Reine Angew. Math. 666, 163–187 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Greenberg, M., Seveso, M.A.: \(p\)-adic families of cohomological modular forms for indefinite quaternion algebras and the Jacquet–Langlands correspondence. Can. J. Math. 68, 961–998 (2016)

    Article  MathSciNet  Google Scholar 

  21. Greenberg, M., Seveso, M.A.: \(p\)-families of modular forms and \(p\)-adic Abel–Jacobi maps. Ann. Math. Qué. 40, 397–434 (2016)

    Article  MathSciNet  Google Scholar 

  22. Greenberg, M., Seveso, M.A.: On the rationality of period integrals and special value formulas in the compact case. To appear in Rendiconti del Seminario Matematico della Università di Padova

  23. Greenberg, R., Stevens, G.: \(p\)-adic \(L\)-functions and \(p\)-adic periods of modular forms. Invent. Math. 111, 401–447 (1993)

    Article  MathSciNet  Google Scholar 

  24. Harris, M., Kudla, S.S.: The central critical value of a triple product \(L\)-function. Ann. Math. (2) 133(3), 605–672 (1991)

    Article  MathSciNet  Google Scholar 

  25. Harris, M., Tilouine, J.: \(p\)-adic measures and square roots of special values of triple product \(L\)-functions. Math. Ann. 320, 127–147 (2001)

    Article  MathSciNet  Google Scholar 

  26. Hida, H.: Congruence of cusp forms and special values of their zeta functions. Invent. Math. 63(2), 225–261 (1981)

    Article  MathSciNet  Google Scholar 

  27. Hida, H.: Galois representations into \(\mathbf{GL} _{2}\left( \mathbb{Z}_{p}\left[\left[X\right] \right] \right) \) attached to ordinary cusp forms. Invent. Math. 85(3), 545–613 (1986)

    Article  MathSciNet  Google Scholar 

  28. Hida, H.: Modules of congruence of Hecke algebras and \(L\)-functions associated with cusp forms. Am. J. Math. 110, 323–382 (1988)

    Article  MathSciNet  Google Scholar 

  29. Hsieh, M.L.: Hida families and \(p\)-adic triple product \(L\)-functions. Am. J.Math. (To Appear). https://www.math.sinica.edu.tw/mlhsieh/research.htm

  30. Hu, Y.: The subconvexity bound for the triple product \(L\) -function in level aspect. Am. J. Math. 139(1), 215–259 (2017)

    Article  Google Scholar 

  31. Ichino, A.: Trilinear forms and the central values of triple product \(L\)-functions. Duke Math. J. 145(2), 281–307 (2008)

    Article  MathSciNet  Google Scholar 

  32. Kings, G., Loeffler, D., Zerbes, S.-L.: Rankin–Eisenstein classes and explixit reciprocity laws. Camb. J. Math. 5(1), 1–122 (2017)

    Article  MathSciNet  Google Scholar 

  33. Mazur, B., Tate, J., Teitelbaum, J.: On \(p\)-adic analogs of the conjectures of Birch and Swinnerton–Dyer. Invent. Math. 84, 1–48 (1986)

    Article  MathSciNet  Google Scholar 

  34. Prasad, D.: Trilinear forms for representations of GL (2) and local \(\epsilon \)-factors. Compos. Math. 75(1), 1–46 (1990)

    MathSciNet  MATH  Google Scholar 

  35. Pollack, R., Weston, T.: On anticyclotomic \( {\mu } \)-invariants of modular forms. Compos. Math. 147(5), 1353–1381 (2011)

    Article  MathSciNet  Google Scholar 

  36. Saha, J.P.: Purity for families of Galois representations. Ann. I. Fourier 67, 879–910 (2017)

    Article  MathSciNet  Google Scholar 

  37. Saha, J.P.: Conductors in \(p\)-adic families. Ramanujan J. 44, 359–366 (2017)

    Article  MathSciNet  Google Scholar 

  38. Seveso, M.A.: Heegner cycles and derivatives of p-adic L-functions. J. Reine Angew. Math. 686, 111–148 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Venerucci, R.: \(p\)-adic regulators and \(p\)-adic families of modular forms. Ph. D. thesis

  40. Venerucci, R.: Exceptional zero formulae and a conjecture of Perrin–Riou. Invent. Math. 203, 923–972 (2016)

    Article  MathSciNet  Google Scholar 

  41. Venerucci, R.: On the p-converse of the Kolyvagin-Gross-Zagier theorem. Comment. Math. Helv. 91, 397–444 (2016)

    Article  MathSciNet  Google Scholar 

  42. Weil, A.: Adeles and algebraic groups. Progress in Mathematics vol. 23, Birkhäuser Boston (1982)

  43. Woodbury, M.: Explicit trilinear forms and triple product \(L\)-functions. Preprint. http://www.mi.uni-koeln.de/~woodbury/research/researchindex.html

  44. Yu, C.-F.: Variations of Mass formulas for definite division algebras. J. Algebra 422, 166–186 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Adamo Seveso.

Additional information

Communicated by Toby Gee.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenberg, M., Seveso, M.A. Triple product p-adic L-functions for balanced weights. Math. Ann. 376, 103–176 (2020). https://doi.org/10.1007/s00208-019-01865-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01865-w

Mathematics Subject Classification

Navigation