Skip to main content
Log in

On the stability of extensions of tangent sheaves on Kähler–Einstein Fano/Calabi–Yau pairs

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let S be a smooth projective variety and \(\Delta \) a simple normal crossing \({\mathbb {Q}}\)-divisor with coefficients in (0, 1]. For any ample \({\mathbb {Q}}\)-line bundle L over S, we denote by \(\mathscr {E}(L)\) the extension sheaf of the orbifold tangent sheaf \(T_S(-\log (\Delta ))\) by the structure sheaf \(\mathcal {O}_S\) with the extension class \(c_1(L)\). We prove the following two results:

  1. (1)

    if \(-(K_S+\Delta )\) is ample and \((S, \Delta )\) is K-semistable, then for any \(\lambda \in {\mathbb {Q}}_{>0}\), the extension sheaf \(\mathscr {E}({\lambda c_1(-(K_S+\Delta ))})\) is slope semistable with respect to \(-(K_S+\Delta )\);

  2. (2)

    if \(K_S+\Delta \equiv 0\), then for any ample \({\mathbb {Q}}\)-line bundle L over S, \(\mathscr {E}(L)\) is slope semistable with respect to L.

These results generalize Tian’s result where \(-K_S\) is ample and \(\Delta =\emptyset \). We give two applications of these results. The first is to study a question by Borbon–Spotti about the relationship between local Euler numbers and normalized volumes of log canonical surface singularities. We prove that the two invariants differ only by a factor 4 when the log canonical pair is an orbifold cone over a marked Riemann surface. In particular we complete the computation of Langer’s local Euler numbers for any line arrangements in \({\mathbb {C}}^2\). The second application is to derive Miyaoka–Yau-type inequalities on K-semistable log-smooth Fano pairs and Calabi–Yau pairs, which generalize some Chern-number inequalities proved by Song–Wang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Since we will be using approximation approach to deal with K-semistability in step 3, we just need the version involving uniform K-stability in [35, Theorem 2.6].

  2. The author would like to thank a referee for pointing this out.

References

  1. Berman, R.: K-stability of \({\mathbb{Q}}\)-Fano varieties admitting Kähler-Einstein metrics. Invent. Math. 203(3), 973–1025 (2015)

    Article  Google Scholar 

  2. Berman, R., Boucksom, S., Jonsson, M.: A variational approach to the Yau-Tian-Donaldson conjecture, to appear in J. Amer. Math. Soc. (2020) arXiv:1509.04561

  3. de Borbon, M., Spotti, C.: Calabi-Yau metrics with conical singularities along line arrangements. arXiv:1712.07967

  4. Blum, H.: Existence of valuations with smallest normalized volume. Compos. Math. 154(4), 820–849 (2018)

    Article  MathSciNet  Google Scholar 

  5. Boucksom, S., de Fernex, T., Favre, C., Urbinati, S.: Valuation spaces and multiplier ideals on singular varieties, Recent advances in algebraic geometry, 29–51, London Math. Soc. Lecture Note Ser., 417, Cambridge University Press, Cambridge (2015)

  6. Boucksom, S., Hisamoto, T., Jonsson, M.: Uniform K-stability, Duistermaat-Heckman measures and singularities of Paris. Ann. Inst. Fourier (Grenoble) 67(2), 743–841 (2017)

    Article  MathSciNet  Google Scholar 

  7. Campana, F., Guenancia, H., Pǎun, M.: Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. Ann. Scient. Éc. Norm. Sup. 46, 879–916 (2013)

    Article  MathSciNet  Google Scholar 

  8. Campana, F., Pǎun, M.: Positivity properties of the bundle of logarithmic tensors on compact Kähler manifolds. Compos. Math. 152, 2350–2370 (2016)

    Article  MathSciNet  Google Scholar 

  9. Claudon, B., Kebekus, S., Taji, B.: Generic positivity and applications to hyperbolicity of moduli spaces, arXiv:1610.09832. To appear as a chapter in a forthcoming book on hyperbolicity (2016)

  10. Chen, X.X., Donaldson, S.K., Sun, S.: Kähler-Einstein metrics on Fano manifolds, I–III. J. Am. Math. Soc. 28, 183–197 (2015). (199–234, 235–278 )

    Article  Google Scholar 

  11. Demailly, J.P.: Complex Analytic and Differential Geometry (2012)

  12. Donaldson, S.: Scalar curvature and stability of toric varieties. J. Differ. Geometry 62(2), 289–349 (2002)

    Article  MathSciNet  Google Scholar 

  13. Donaldson, S.: Kähler metrics with cone singularities along a divisor. Essays in Mathematics and its applications, pp. 49–79. Springer, Berlin (2012)

    MATH  Google Scholar 

  14. Ein, L., Lazarsfeld, R., Smith, K.E.: Uniform approximation of Abhyankar valuation ideals in smooth function fields. Am. J. Math. 125, 409–440 (2003)

    Article  MathSciNet  Google Scholar 

  15. Greb, D., Kebekus, S., Peternell, T., Taji, Behrouz: The Miyaoka-Yau inequality and uniformisation of canonical models, Ann. Sci. Éc. Norm. Supér. (4), to appear, Preprint (2015), arXiv:1511.08822

  16. Guenancia, H.: Kähler-Einstein metrics with mixed Poincaré and cone singularities along a normal crossing divisor. Ann. Inst. Fourier (Grenoble) 64(3), 1291–1330 (2014)

    Article  MathSciNet  Google Scholar 

  17. Guenancia, H.: Semistability of the tangent sheaf of singular varieties. Algebr. Geometry 3(5), 508–542 (2016)

    Article  MathSciNet  Google Scholar 

  18. Guenancia, H., Pǎun, M.: conic singularities metrics with prescribed Ricci curvature: the case of general cone angles along normal crossing divisors. J. Differ. Geom. 103(1), 15–57 (2016)

    Article  Google Scholar 

  19. Guenancia, H., Taji, B.: Orbifold stability and Miyaoka-Yau inequality for minimal pairs. arXiv:1611.05981

  20. Fujita, K.: K-stability of log Fano hyperplane arrangements. arXiv:1709.08213

  21. Hein, H.-J., Sun, S.: Calabi-Yau manifolds with isolated conical singularities. Publ. Math. Inst. Hautes Études Sci. 126, 73–130 (2017)

    Article  MathSciNet  Google Scholar 

  22. Jonsson, M., Mustaţă, M.: Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier, Grenoble, 62, 6, 2145–2209 (2012) arXiv:1011.3699

  23. Jeffres, T., Mazzeo, R., Rubinstein, Y.: Kähler-Einstein metrics with edge singularities, with an appendix by C. Li and Y. Rubinstein. Ann. Math. (2) 183(1), 95–176 (2016)

    Article  MathSciNet  Google Scholar 

  24. Kobayashi, R.: Kähler-Einstein metric on an open algebraic manifold. Osaka J. Math. 21(2), 399–418 (1984)

    MathSciNet  MATH  Google Scholar 

  25. Kollár, J.: Singularities of the Minimal Model Program, Cambridge Tracts in Mathematics, 200. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  26. Langer, A.: The Bogomolov-Miyaoka-Yau inequality for log canonical surfaces. J. Lond. Math. Soc. (2) 64, 327–343 (2001)

    Article  MathSciNet  Google Scholar 

  27. Langer, A.: Logarithmic orbifold Euler numbers of surfaces with applications. Proc. Lond. Math. Soc. (3) 86(2), 358–396 (2003)

    Article  MathSciNet  Google Scholar 

  28. Li, C.: Remarks on logarithmic K-stability. Commun. Contemp. Math. 17(2), 1450020 (2015)

    Article  MathSciNet  Google Scholar 

  29. Li, C.: Yau-Tian-Donaldson correspondence for K-semistable Fano manifolds. J. Reine Angew. Math. 733, 55–85 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Li, C.: Minimizing normalized volume of valuations, to appear in. Math. Z. 289(1–2), 491–513 (2018)

    Article  MathSciNet  Google Scholar 

  31. Li, C.: K-semistability is equivariant volume minimization. Duke Math. J. 166(16), 3147–3218 (2017)

    Article  MathSciNet  Google Scholar 

  32. Li, C., Liu, Y.: Kähler-Einstein metrics and volume minimization. Adv. Math. 341, 440–492 (2019)

    Article  MathSciNet  Google Scholar 

  33. Li, C., Liu, Y., Xu, C.: A guided tour to normalized volume, arXiv:1806.07112

  34. Li, C., Sun, S.: Conical Kähler-Einstein metrics revisited. Comm. Math. Phys. 331, 927–973 (2014)

    Article  MathSciNet  Google Scholar 

  35. Li, C., Tian, G., Wang, F.: On the Yau-Tian-Donaldson conjecture for singular Fano varieties. Published online in Comm. Pure Appl. Math. (2020) arXiv:1711.09530

  36. Li, C., Xu, C.: Special test configuration and K-stability of Fano varieties. Ann. Math. 180, 197–232 (2014)

    Article  MathSciNet  Google Scholar 

  37. Li, C., Xu, C.: Stability of valuations and Kollár components. J. Eur. Math. Soc. (JEMS) 22(8), 2573–2627 (2020)

    Article  MathSciNet  Google Scholar 

  38. Li, C., Xu, C.: Stability of valuations: higher rational rank. Peking Math. J. 1(1), 1–79 (2018)

    Article  MathSciNet  Google Scholar 

  39. Megyesi, G.: Generalization of the Bogomolov-Miyaoka-Yau inequality to singular surfaces. Proc. Lond. Math. Soc. (3) 78, 241–282 (1999)

    Article  MathSciNet  Google Scholar 

  40. Miyaoka, Y.: The Chern number classes and Kodaira dimension of a minimal variety, advanced studies in pure mathematics, 10, pp. 449–476. Algebraic geometry, Sendai (1987)

  41. Mumford, D.: Towards an enumerative geometry of the moduli space of curves, in Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, pp. 271–328 (1983)

  42. Song, J., Wang, X.: The greatest Ricci lower bound, conical Einstein metrics and the Chern number inequality. Geom. Topol. 20, 49–102 (2016)

    Article  MathSciNet  Google Scholar 

  43. Tian, G.: On stability of the tangent bundles of Fano varieties. Int. J. Math. 3, 401–413 (1992)

    Article  MathSciNet  Google Scholar 

  44. Tian, G.: Kähler-Einstein metrics on algebraic manifolds, in Transcendental methods in Algebraic Geometry, Lecture Notes of the C.I.M.E., (1994)

  45. Tian, G.: Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 137, 1–37 (1997)

    Article  Google Scholar 

  46. Tian, G.: K-stability and Kähler-Einstein metrics. Commun. Pure Appl. Math. 68(7), 1085–1156 (2015)

    Article  Google Scholar 

  47. Tian, G., Wang, F.: On the existence of conic Kähler-Einstein metrics, arXiv:1903.12547

  48. Tian, G., Yau, S.T.: Existence of Kähler-Einstein metrics on complex Kähler-Einstein manifolds and applications to algebraic geometry, Mathematical Aspects of String Theory (San Diego, Calif. 1986), Adv. Ser. Math. Phys., vol. 1, pp. 574–628. World Science Publishing, Singapore (1987)

    Google Scholar 

  49. Wahl, J.: Equisingular deformations of normal surface singularities, I. Ann. Math. 104, 325–356 (1976)

    Article  MathSciNet  Google Scholar 

  50. Wahl, J.: Second Chern class and Riemann-Roch for vector bundles on resolutions of surface singularities. Math. Ann. 295, 81–110 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is partially supported by NSF (Grant no. DMS-1405936 and DMS-1810867) and an Alfred P. Sloan research fellowship. The author would like to thank Martin de Borbon and Christiano Spotti for useful comments and the suggestion of adding the example 1.8, and to thank Henri Guenancia and Behrouz Taji for their interest and especially to Behrouz Taji for very helpful comments and suggestions about orbifold structures. His thanks also go to Yuchen Liu, Xiaowei Wang and Chenyang Xu for helpful discussions. The author would like to thank Professor Gang Tian for his interest in this work and constant support through the years. The author would also like to thank a referee for very helpful suggestions for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Li.

Additional information

Communicated by Ngaiming Mok.

To Professor Gang Tian on the occasion of his sixtieth birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C. On the stability of extensions of tangent sheaves on Kähler–Einstein Fano/Calabi–Yau pairs. Math. Ann. 381, 1943–1977 (2021). https://doi.org/10.1007/s00208-020-02099-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02099-x

Navigation