Skip to main content
Log in

Biharmonic maps from R 4 into a Riemannian manifold

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For a domain Ω⊂R 4 and a compact Riemannian manifold NR k without boundary, if uW 2,2(Ω,N) is an extrinsic (or intrinsic, respectively) biharmonic map, then uC (Ω,N).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bethuel, F.: On the singular set of stationary harmonic maps. Manuscripta Math. 78(4), 417–443 (1993)

    MATH  Google Scholar 

  2. Baird, P., Kamissoko, D.: On constructing Biharmonic maps and Metrics. Ann. Global Anal. Geom. 23, 65–75 (2003)

    Article  MATH  Google Scholar 

  3. Chang, S.Y.A., Gursky, M., Yang, P.: Regularity of a fourth order nonlinear PDE with critical exponent. Am. J. Math. 121, 215–257 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Chang, S.Y.A., Wang, L., Yang, P.: A regularity theory of biharmonic maps. Comm. Pure Appl. Math. 52(9), 1113–1137 (1999)

    Article  MATH  Google Scholar 

  5. Chang, S.Y.A., Wang, L., Yang, P.: Regularity of harmonic maps. Comm. Pure Appl. Math. 52, 1099–1111 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Donaldson, S., Kronheimer, P.: The geometry of four manifolds. Oxford Mathematical Monographs, New York: Oxford University Press, 1990

  7. Evans, L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Rational Mech. Anal. 116(2), 101–113 (1991)

    MATH  Google Scholar 

  8. Eells, J., Lemaire, L.: Another report on harmonic maps. Bull. London Math. Soc. 20(5), 385–524 (1988)

    MATH  Google Scholar 

  9. Frehse, J.: A discontinuous solution of a mildly nonlinear elliptic system. Math. Z. 134, 229–230 (1973)

    MATH  Google Scholar 

  10. Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. C. R. Acad. Sci. Paris Sér. I Math. 312(8), 591–596 (1991)

    Google Scholar 

  11. Hélein, F.: Harmonic Maps, Conservation Laws, and Moving Frames. Translated from the 1996 French original. With a foreword by James Eells. Second edition. Cambridge Tracts in Mathematics, 150, Cambridge: Cambridge University Press, 2002

  12. Iwaniec, T., Martin, G.: Quasiregular mappings in even dimensions. Acta Math 170(1), 29–81 (1993)

    MATH  Google Scholar 

  13. Ku, Y.: Interior and boundary regularity of intrinsic biharmonic maps to spheres. Preprint

  14. Lin, F.H., Riviére, T.: Energy quantization for harmonic maps. Duke Math. J. 111(1), 177–193 (2002)

    MATH  Google Scholar 

  15. O’Neil, R.: Convolution operators and L(p,q) spaces. Duke Math. J. 30, 129–142 (1963)

    MATH  Google Scholar 

  16. Peetre, J.: Nouvelles proprietés d’espaces d’interpolation. C. R. Acad. Sci. 256, 1424–1426 (1963)

    MATH  Google Scholar 

  17. Riviére, T.: Interpolation spaces and energy quantization for Yang-Mills fields. Comm. Anal. Geom. 10(4), 683–708 (2002)

    Google Scholar 

  18. Schoen, R.: Analytic aspects of the harmonic map problem. Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., 2, Springer, New York, 1984, pp. 321–358

  19. Shatah, J., Struwe, M.: The Cauchy problem for wave maps. Int. Math. Res. Not. 11, 555–571 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton, 1971

  21. Tartar, L.: Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1(3), 479–500 1998

    Google Scholar 

  22. Uhlenbeck, K.: Regularity theorems for solutions of elliptic polynomial equations. Global Analysis (Proc. Sympos. Pure Math. Vol. XVI, Berkeley, Calif. 1968), Amer. Math. Soc., Providence, RI, 1970, pp. 225–231

  23. Uhlenbeck, K.: Removable singularities in Yang-Mills fields. Comm. Math. Phys. 83, 11–29 (1982)

    MathSciNet  MATH  Google Scholar 

  24. Uhlenbeck, K.: Connections with L p-bounds on curvature. Comm. Math. Phys. 83, 31–42 (1982)

    Google Scholar 

  25. Wang, C.Y.: Remarks on biharmonic maps into spheres. Calc. Var. To appear

  26. Wang, C.Y.: Stationary biharmonic maps from R m into a Riemannian manifold. Comm. Pure Appl. Math. To appear

  27. Ziemer, W.P.: Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyou Wang.

Additional information

in final form: 1 August 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C. Biharmonic maps from R 4 into a Riemannian manifold. Math. Z. 247, 65–87 (2004). https://doi.org/10.1007/s00209-003-0620-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-003-0620-1

Keywords

Navigation