Skip to main content
Log in

The stress-energy tensor for biharmonic maps

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Using Hilbert’s criterion, we consider the stress-energy tensor associated to the bienergy functional. We show that it derives from a variational problem on metrics and exhibit the peculiarity of dimension four. First, we use this tensor to construct new examples of biharmonic maps, then classify maps with vanishing or parallel stress-energy tensor and Riemannian immersions whose stress-energy tensor is proportional to the metric, thus obtaining a weaker but high-dimensional version of the Hopf Theorem on compact constant mean curvature immersions. We also relate the stress-energy tensor of the inclusion of a submanifold in Euclidean space with the harmonic stress-energy tensor of its Gauss map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baird, P., Eells, J.: A conservation law for harmonic maps. Geometry Symposium, Utrecht 1980. Lecture Notes in Mathematics, vol. 894, pp. 1–25. Springer, Berlin (1981)

  2. Baird P. and Kamissoko D. (2003). On constructing biharmonic maps and metrics. Ann. Glob. Anal. Geom. 23: 65–75

    Article  MATH  MathSciNet  Google Scholar 

  3. Baird P. and Wood J.C. (2003). Harmonic Morphisms between Riemannian Manifolds. Oxford Science Publications, Oxford

    MATH  Google Scholar 

  4. Balmuş A. (2004). Biharmonic properties and conformal changes. An. Stiint. Univ. Al.I.~Cuza Iasi Mat. (N.S.) 50: 361–372

    MathSciNet  Google Scholar 

  5. Balmuş A., Montaldo S. and Oniciuc C. (2007). Biharmonic maps between warped product manifolds. J. Geom. Phys. 57: 449–466

    Article  MathSciNet  Google Scholar 

  6. Berger M. (1970). Quelques formules de variation pour une structure riemannienne. Ann. Sci. Ec. Norm. Sup. 3: 285–294

    MATH  Google Scholar 

  7. Besse A. (1987). Einstein Manifolds. Springer, Berlin

    MATH  Google Scholar 

  8. Caddeo R., Montaldo S. and Oniciuc C. (2001). Biharmonic submanifolds of \({\mathbb{S}}^3\). Int. J. Math. 12: 867–876

    Article  MATH  MathSciNet  Google Scholar 

  9. Caddeo R., Montaldo S. and Oniciuc C. (2002). Biharmonic submanifolds in spheres. Israel J. Math. 130: 109–123

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen B.Y. (1973). Geometry of Submanifolds. Marcel Dekker, New York

    MATH  Google Scholar 

  11. Dillen F. (1991). Semi-parallel hypersurfaces of a real space form. Israel J. Math. 75: 193–202

    Article  MATH  MathSciNet  Google Scholar 

  12. Eells J. and Sampson J.H. (1964). Harmonic mappings of Riemannian manifolds. Am. J. Math. 86: 109–160

    Article  MATH  MathSciNet  Google Scholar 

  13. Eells J. and Lemaire L. (1978). A report on harmonic maps. Bull. Lond. Math. Soc. 10: 1–68

    Article  MATH  MathSciNet  Google Scholar 

  14. Hilbert D. (1924). Die Grundlagen der Physik. Math. Ann. 92: 1–32

    Article  MathSciNet  Google Scholar 

  15. Hu Z.J. (1995). Complete hypersurfaces with constant mean curvature and nonnegative sectional curvatures. Proc. Am. Math. Soc. 123: 2835–2840

    Article  MATH  Google Scholar 

  16. Jiang G.Y. (1987). The conservation law for 2-harmonic maps between Riemannian manifolds. Acta Math. Sin. 30: 220–225

    MATH  Google Scholar 

  17. Montaldo S. and Oniciuc C. (2006). A short survey on biharmonic maps between Riemannian manifolds. Rev. Un. Mat. Argentina 47(2): 1–22

    MATH  MathSciNet  Google Scholar 

  18. Oniciuc C. (2002). Biharmonic maps between Riemannian manifolds. An. Stiint. Univ. Al.I. Cuza Iasi Mat. (N.S.) 48: 237–248

    MATH  MathSciNet  Google Scholar 

  19. Petersen P. (1998). Riemannian Geometry. Springer, New York

    MATH  Google Scholar 

  20. Ruh E. and Vilms J. (1970). The tension field of the Gauss map. Trans. Am. Math. Soc. 149: 569–573

    Article  MATH  MathSciNet  Google Scholar 

  21. Sakai T. (1996). On Riemannian manifolds admitting a function whose gradient is of constant norm. Kodai Math. J. 19: 39–51

    Article  MATH  MathSciNet  Google Scholar 

  22. Sanini A. (1983). Applicazioni tra varietà riemanniane con energia critica rispetto a deformazioni di metriche. Rend. Mat. 3: 53–63

    MATH  MathSciNet  Google Scholar 

  23. Yau S.T. (1976). Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25: 659–670

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Loubeau.

Additional information

In memoriam James Eells.

S. Montaldo was supported by PRIN-2005 (Italy): Riemannian Metrics and Differentiable Manifolds. C. Oniciuc was supported by a CNR-NATO (Italy) fellowship and by the Grant CEEX, ET, 5871/2006 (Romania).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loubeau, E., Montaldo, S. & Oniciuc, C. The stress-energy tensor for biharmonic maps. Math. Z. 259, 503–524 (2008). https://doi.org/10.1007/s00209-007-0236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0236-y

Keywords

Mathematics Subject Classification (2000)

Navigation