Skip to main content
Log in

Stability of the Reeb vector field of H-contact manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

It is well known that a Hopf vector field on the unit sphere S 2n+1 is the Reeb vector field of a natural Sasakian structure on S 2n+1. A contact metric manifold whose Reeb vector field ξ is a harmonic vector field is called an H-contact manifold. Sasakian and K-contact manifolds, generalized (kμ)-spaces and contact metric three-manifolds with ξ strongly normal, are H-contact manifolds. In this paper we study, in dimension three, the stability with respect to the energy of the Reeb vector field ξ for such special classes of H-contact manifolds (and with respect to the volume when ξ is also minimal) in terms of Webster scalar curvature. Finally, we extend for the Reeb vector field of a compact K-contact (2n+1)-manifold the obtained results for the Hopf vector fields to minimize the energy functional with mean curvature correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blair D.E.: Riemannian geometry of contact and symplectic manifold. Progress in Math. 203. Birkhäuser, Boston (2002)

    Google Scholar 

  2. Blair D.E., Koufogiorgos T., Papantoniou B.J.: Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91, 189–214 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boeckx E., González-Dávila J.C., Vanhecke L.: Stability of the geodesic flow for the energy. Comm. Math. Univ. Carolinae 43, 201–213 (2002)

    MATH  Google Scholar 

  4. Boothby W.M.: An introduction to differentiable manifolds and Riemannian geometry. Academic Press, New York (1975)

    MATH  Google Scholar 

  5. Boyer C., Galicki K.: Einstein manifolds and contact geometry. Proc. Amer. Math. Soc. 129, 2419–2430 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boyer C., Galicki K.: On Sasakian-Einstein geometry. Intern. J. Math. 11, 873–909 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Borrelli V.: Stability of the Reeb vector field of a Sasakian manifold. Soochow J. Math. 30(3), 283–292 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Borrelli V., Gil-Medrano O.: A critical radius for unit Hopf vector fields on spheres. Math. Ann. 324(4), 731–751 (2006)

    Article  MathSciNet  Google Scholar 

  9. Brito F.: Total bending of flows with mean curvature correction. Differ. Geom. Appl. 12, 157–163 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chern S.S., Hamilton R.S.: On Riemannian metrics adapted to three-dimensional contact manifolds. Lecture Notes in Math. 1111, pp. 279–305. Springer-Verlag, Berlin (1985)

    Google Scholar 

  11. Gil-Medrano O.: Relationiship between volume and energy of unit vector fields. Differ. Geom. Appl. 15, 137–152 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gil-Medrano, O.: Unit vector fields that are critical points of the volume and of the energy: cha-racterization and examples. Proceedings of the International Conference “Curvature in Geometry” in honour of Prof. L. Vanhecke, Progress in Math. 234, Birkhäuser, Boston, pp. 165–186 (2005)

  13. Gil-Medrano O., Llinares-Fuster E.: Second variation of volume and energy of vector fields. Stability of Hopf vector fields. Math. Ann. 320, 531–545 (2001)

    MATH  MathSciNet  Google Scholar 

  14. Gil-Medrano O., Llinares-Fuster E.: Minimal unit vector fields. Tohoku Math. J. 54, 71–84 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gluck H., Ziller W.: On the volume of a unit vector field on the three sphere. Comment. Math. Helv. 61, 177–192 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. González-Dávila J.C., Vanhecke L.: Examples of minimal unit vector fields. Ann. Global Anal. Geom. 18, 385–404 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Koufogiorgos T., Tsichlias C.: On the existence of a new class of contact metric manifolds. Canad. Math. Bull. 43, 440–447 (2000)

    MATH  MathSciNet  Google Scholar 

  18. Milnor J.: Curvature of left invariant metrics on Lie groups. Adv. in Math. 21, 293–329 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  19. Perrone D.: Contact Riemannian manifolds satisfying R(X, ξ)R = 0. Yokohama Math. J. 39, 141–149 (1992)

    MATH  MathSciNet  Google Scholar 

  20. Perrone D.: Ricci tensor and spectral rigidity of contact Riemannian three-manifolds. Bull. Inst. Math. Acad. Sin. 24, 127–138 (1996)

    MATH  MathSciNet  Google Scholar 

  21. Perrone D.: Homogeneous contact Riemannian three-manifolds. Ill. Math. J. 42, 243–256 (1998)

    MATH  MathSciNet  Google Scholar 

  22. Perrone D.: Harmonic characteristic vector fields on contact metric three-manifolds. Bull. Aust. Math. Soc 67, 305–315 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Perrone D.: Contact metric manifolds whose characteristic vector field is a harmonic vector field. Differ. Geom. Appl. 20, 367–378 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Perrone D.: The rough Laplacian and harmonicity of Hopf vector fields. Ann. Global Anal. Geom. 28, 91–106 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Poor W.A.: Differential geometric structures. McGraw Hill, New York (1981)

    MATH  Google Scholar 

  26. Tanno S.: The topology of contact Riemannian manifolds. Ill. Math. J. 12, 700–717 (1968)

    MATH  MathSciNet  Google Scholar 

  27. Tanno S.: Variational problems on contact Riemannian manifolds. Trans. Am. Math. Soc. 314, 349–379 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Watanabe Y.: Geodesic symmetries in Sasakian locally ϕ-symmetric spaces. Kodai Math. J. 3(1), 48–55 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wiegmink G.: Total bending of vector fields on Riemannian manifolds. Math. Ann. 303, 325–344 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wiegmink G.: Total bending of vector fields on the sphere S 3. Differ. Geom. Appl. 6, 219–236 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wood C.M.: On the energy of a unit vector field. Geom. Dedicata 64, 319–330 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wood C.M.: The energy of Hops vector field. Manuscr. Math. 101, 71–78 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Perrone.

Additional information

Supported by funds of the University of Lecce and M.I.U.R.(PRIN).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrone, D. Stability of the Reeb vector field of H-contact manifolds. Math. Z. 263, 125–147 (2009). https://doi.org/10.1007/s00209-008-0413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0413-7

Keywords

Mathematics Subject Classification (2000)

Navigation