Skip to main content
Log in

Packing dimension and Ahlfors regularity of porous sets in metric spaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let X be a metric measure space with an s-regular measure μ. We prove that if \({A\subset X}\) is \({\varrho}\) -porous, then \({{\rm {dim}_p}(A)\le s-c\varrho^s}\) where dimp is the packing dimension and c is a positive constant which depends on s and the structure constants of μ. This is an analogue of a well known asymptotically sharp result in Euclidean spaces. We illustrate by an example that the corresponding result is not valid if μ is a doubling measure. However, in the doubling case we find a fixed \({N\subset X}\) with μ(N) = 0 such that \({{\rm {dim}_p}(A)\le{\rm {dim}_p}(X)-c(\log \tfrac1\varrho)^{-1}\varrho^t}\) for all \({\varrho}\) -porous sets \({A \subset X{\setminus} N}\) . Here c and t are constants which depend on the structure constant of μ. Finally, we characterize uniformly porous sets in complete s-regular metric spaces in terms of regular sets by verifying that A is uniformly porous if and only if there is t < s and a t-regular set F such that \({A\subset F}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beliaev D., Smirnov S.: On dimension of porous measures. Math. Ann. 323, 123–141 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bojarski B.: Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987, 52–68. Lecture Notes in Math., vol. 1351. Springer, Berlin (1988)

    Google Scholar 

  3. Bonk M., Heinonen J., Rohde S.: Doubling conformal densities. J. Reine Angew. Math. 541, 117–141 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Caetano A.: On fractals which are not so terrible. Fund. Math. 171, 249–266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cutler C.: The density theorem and Hausdorff inequality for packing measure in general metric spaces. Ill. J. Math. 39, 676–694 (1995)

    MathSciNet  MATH  Google Scholar 

  6. David G., Semmes S.: Fractured Fractals and Broken Dreams. Self-similar geometry through metric and measure. Oxford Lecture Series in Mathematics and its Applications, vol. 7. The Clarendon Press/Oxford University Press, New York (1997)

    Google Scholar 

  7. Heinonen J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001)

    MATH  Google Scholar 

  8. Järvenpää E., Järvenpää M., Käenmäki A., Suomala V.: Asymptotically sharp dimension estimates for k-porous sets. Math. Scand. 97, 309–318 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Käenmäki, A., Suomala, V.: Nonsymmetric conical upper density and k-porosity. Trans. Am. Math. Soc. (to appear)

  10. Käenmäki A., Vilppolainen M.: Separation conditions on controlled Moran constructions. Fund. Math. 200(1), 69–100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koskela P., Rohde S.: Hausdorff dimension and mean porosity. Math. Ann. 309, 593–609 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Luukkainen J.: Assouad dimension: antifractal metrization porous sets and homogeneous measures. J. Korean Math. Soc. 35, 23–76 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Luukkainen J., Saksman E.: Every complete doubling metric space carries a doubling measure. Proc. Am. Math. Soc. 126, 531–534 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martio O., Vuorinen M.: Whitney cubes, p-capacity, and Minkowski content. Exposition Math. 5, 17–40 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Mattila P.: Distribution of sets and measures along planes. J. Lond. Math. Soc. 38, 125–132 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mattila P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  17. Mera M., Morán M., Preiss D., Zajíček L.: Porosity, σ-porosity and measures. Nonlinearity 16, 247–255 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mattila, P., Saaranen, P.: Ahlfors-David regular sets and bilipschitz maps. Reports in Mathematics, University of Helsinki, vol. 484 (2008, preprint)

  19. Nieminen T.: Generalized mean porosity and dimension. Ann. Acad. Sci. Fenn. Math. 31, 143–172 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Przytycki F., Rohde S.: Porosity of Collet-Eckmann julia sets. Fund. Math. 155, 189–199 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Salli A.: On the Minkowski dimension of strongly porous fractal sets in \({\mathbb R^n}\) . Proc. Lond. Math. Soc. 62, 353–372 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Trotsenko D.: Properties of regions with nonsmooth boundary. Sibirsk. Mat. Zh. 22, 221–224 (1981)

    MathSciNet  MATH  Google Scholar 

  23. Wheeden R., Zygmund A.: Measure and Integral: An Introduction to Real Analysis. Marcel Dekker, New York (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ville Suomala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Järvenpää, E., Järvenpää, M., Käenmäki, A. et al. Packing dimension and Ahlfors regularity of porous sets in metric spaces. Math. Z. 266, 83–105 (2010). https://doi.org/10.1007/s00209-009-0555-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-009-0555-2

Keywords

Mathematics Subject Classification (2000)

Navigation