Skip to main content
Log in

A new linear quotient of C 4 admitting a symplectic resolution

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We show that the quotient C 4/G admits a symplectic resolution for \({G = Q_8 \times_{{\bf Z}/2} D_8 < {\sf Sp}_4({\bf C})}\). Here Q 8 is the quaternionic group of order eight and D 8 is the dihedral group of order eight, and G is the quotient of their direct product which identifies the nontrivial central elements −Id of each. It is equipped with the tensor product representation \({{\bf C}^2 \boxtimes {\bf C}^2 \cong {\bf C}^4}\). This group is also naturally a subgroup of the wreath product group \({Q_8^2 \rtimes S_2 < {\sf Sp}_4({\bf C})}\). We compute the singular locus of the family of commutative spherical symplectic reflection algebras deforming C 4/G. We also discuss preliminary investigations on the more general question of classifying linear quotients V/G admitting symplectic resolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellamy, G.: Cuspidal representations of rational Cherednik algebras at t = 0 (2009). arXiv:0911.0069v1

  3. Bellamy G.: On singular Calogero–Moser spaces. Bull. Lond. Math. Soc. 41(2), 315–326 (2009) arXiv:0707.3694

    Article  MathSciNet  MATH  Google Scholar 

  4. Brown K.A., Gordon I.: Poisson orders, symplectic reflection algebras and representation theory. J. Reine Angew. Math. 559, 193–216 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Brylinski J.-L.: A differential complex for Poisson manifolds. J. Differ. Geom. 28(1), 93–114 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Cohen A.M.: Finite quaternionic reflection groups. J. Algebra 64(2), 293–324 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Etingof P., Ginzburg V.: Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism. Invent. Math. 147(2), 243–348 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Etingof, P., Gong, S., Pacchiano, A., Ren, Q., Schedler, T.: Computational approaches to Poisson traces associated to finite subgroups of \({{\sf Sp}_{2n}(\mathbb{C})}\) (2011). arXiv:1101.5171

  9. Etingof, P., Schedler, T.: Poisson traces for symmetric powers of symplectic varieties (2011). arXiv:1109. 4712

  10. Etingof P., Schedler T.: Poisson traces and \({\mathcal{D}}\) -modules on Poisson varieties. Geom. Funct. Anal. 20, 958–987 (2010) arXiv:0908.3868 (with an appendix by I. Losev)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu B.: A survey on symplectic singularities and symplectic resolutions. Ann. Math. Blaise Pascal 13(2), 209–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ginzburg V., Kaledin D.: Poisson deformations of symplectic quotient singularities. Adv. Math. 186(1), 1–57 (2004) arXiv:math/0212279

    Article  MathSciNet  MATH  Google Scholar 

  13. Gordon I.: Baby Verma modules for rational Cherednik algebras. Bull. Lond. Math. Soc. 35(3), 321–336 (2003)

    Article  MATH  Google Scholar 

  14. Gordon, I.: Symplectic reflection algebras. In: Trends in Representation Theory of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, pp. 285–347 (2008)

  15. Kaledin D.: Symplectic singularities from the Poisson point of view. J. Reine Angew. Math. 600, 135–156 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Kaledin D.: Derived equivalences by quantization, Geom. Funct. Anal. 17(6), 1968–2004 (2008) arXiv:math/0504584

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaledin, D.: Geometry and topology of symplectic resolutions, Algebraic geometry—Seattle 2005. Part 2, Proc. Sympos. Pure Math., vol. 80, pp. 595–628, Am. Math. Soc., Providence, RI (2009). arXiv:math/0608143

  18. Losev, I.: Completions of symplectic reflection algebras (2010). arXiv:1001.0239

  19. Lehn, M., Sorger, C.: A symplectic resolution for the binary tetrahedral group (2008). arXiv:0810.3225v2

  20. Martino M.: The associated variety of a Poisson prime ideal. J. Lond. Math. Soc. (2) 72(1), 110–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Namikawa Y.: Poisson deformations of affine symplectic varieties. Duke Math. J. 156(1), 51–85 (2011) arXiv:math/0609741

    Article  MathSciNet  MATH  Google Scholar 

  22. Shephard G.C., Todd J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274–304 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  23. Verbitsky M.: Holomorphic symplectic geometry and orbifold singularities. Asian J. Math. 4(3), 553–563 (2000) arXiv:math/9903175

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis Schedler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellamy, G., Schedler, T. A new linear quotient of C 4 admitting a symplectic resolution. Math. Z. 273, 753–769 (2013). https://doi.org/10.1007/s00209-012-1028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1028-6

Keywords

Mathematics Subject Classification

Navigation