Skip to main content
Log in

Ricci flow of homogeneous manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We present in this paper a general approach to study the Ricci flow on homogeneous manifolds. Our main tool is a dynamical system defined on a subset \(\mathcal H _{q,n}\) of the variety of \((q+n)\)-dimensional Lie algebras, parameterizing the space of all simply connected homogeneous spaces of dimension \(n\) with a \(q\)-dimensional isotropy, which is proved to be equivalent in a precise sense to the Ricci flow. The approach is useful to better visualize the possible (nonflat) pointed limits of Ricci flow solutions, under diverse rescalings, as well as to determine the type of the possible singularities. Ancient solutions arise naturally from the qualitative analysis of the evolution equation. We develop two examples in detail: a \(2\)-parameter subspace of \(\mathcal H _{1,3}\) reaching most of \(3\)-dimensional geometries, and a \(2\)-parameter family in \(\mathcal H _{0,n}\) of left-invariant metrics on \(n\)-dimensional compact and non-compact semisimple Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alekseevskii, D., Kimel’fel’d, B.: Structure of homogeneous Riemannian spaces with zero Ricci curvature. Funktional Anal. i Prilozen 9, 5–11 (English translation: Funct. Anal. Appl. 9, 97–102 (1975)

  2. Anastassiou, S., Chrysikos, I.: The Ricci flow approach to homogeneous Einstein metrics on flag manifolds. J. Geom. Phys. 61, 1587–1600 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arroyo, R.: Ricci flow of homogeneous \(4\)-manifolds. In preparation

  4. Bakas, I., Kong, S., Ni, L.: Ancient solutions of Ricci flow on spheres and generalized Hopf fibrations. J. Reine Angew. Math. (in press)

  5. Besse, A.: Einstein manifolds. Ergeb. Math. 10 (1987)

  6. Böhm, C., Wilking, B.: Nonnegativily curved manifolds with finite fundamental groups admit metrics with positive Ricci curvature. Geom. Funct. Anal. 17, 665–681 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cao, X., Saloff-Coste, L.: Backward Ricci flow on locally homogeneous three-manifolds. Commun. Anal. Geom. 12, 305–325 (2009)

    MathSciNet  Google Scholar 

  8. Chen, B.-L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 82, 336–382 (2009)

    Google Scholar 

  9. Chen, B.-L., Zhu, X.-P.: Uniqueness of the Ricci flow on complete noncompact Riemannian manifolds. J. Differ. Geom. 74, 119–154 (2006)

    MATH  MathSciNet  Google Scholar 

  10. Chow, B., Knopf, D.: The Ricci flow: an introduction. Mathematical Surveys and Monographs Series 110. American Mathematical Society, Providence (2004)

  11. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications. Part I: Geometric Aspects. AMS Math. Surv. Mon. 135. American Mathematical Society, Providence (2007)

  12. D’Atri, J., Ziller, W.: Naturally reductive metrics and Einstein metrics on compact Lie groups. Mem. Am. Math. Soc., vol. 215 (1979)

  13. Glickenstein, D.: Riemannian groupoids and solitons for three-dimensional homogeneous Ricci and cross curvature flows. Int. Math. Res. Not. 12 (2008). Art. ID rnn034

  14. Glickenstein, D., Payne, T.: Ricci flow on three-dimensional, unimodular metric Lie algebras. Commun. Anal. Geom. 18, 927–962 (2010)

    Google Scholar 

  15. Grama, L., Martins, M.: Global behavior of the Ricci flow on homogeneous manifolds with two isotropy summands. Indag. Math. 23, 95–104 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guzhvina, G.: The action of the Ricci flow on almost flat manifolds. PhD thesis, Universität Münster (2007)

  17. Heinzner, P., Schwarz, G.W., Stötzel, H.: Stratifications with respect to actions of real reductive groups. Compositio Math. 144, 163–185 (2008)

    Article  MATH  Google Scholar 

  18. Isenberg, J., Jackson, M.: Ricci flow of locally homogeneous geometries on closed manifolds. J. Differ. Geom. 35, 723–741 (1992)

    MATH  MathSciNet  Google Scholar 

  19. Isenberg, J., Jackson, M., Lu, P.: Ricci flow on locally homogeneous closed \(4\)-manifolds. Commun. Anal. Geom. 14, 345–386 (2006)

    MATH  MathSciNet  Google Scholar 

  20. Knopf, D., McLeod, K.: Quasi-convergence of model geometries under the Ricci flow. Commun. Anal. Geom. 9, 879–919 (2001)

    MATH  MathSciNet  Google Scholar 

  21. Kotschwar, B.L.: Backwards uniqueness for the Ricci flow. Int. Math. Res. Not. 2010(21), 4064–4097 (2010)

    MATH  MathSciNet  Google Scholar 

  22. Lafuente, R., Lauret, J.: On homogeneous Ricci solitons. In preparation

  23. Lauret, J.: Homogeneous nilmanifolds attached to representations of compact Lie groups. Manuscr. Math. 99, 287–309 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lauret, J.: Ricci soliton homogeneous nilmanifolds. Math. Ann. 319, 715–733 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lauret, J.: A canonical compatible metric for geometric structures on nilmanifolds. Ann. Glob. Anal. Geom. 30, 107–138 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lauret, J.: Einstein solvmanifolds and nilsolitons. Contemp. Math. 491, 1–35 (2009)

    Article  MathSciNet  Google Scholar 

  27. Lauret, J.: The Ricci flow for simply connected nilmanifolds. Commun. Anal. Geom. 19, 831–854 (2011)

    MATH  MathSciNet  Google Scholar 

  28. Lauret, J.: Convergence of homogeneous manifolds. J. Lond. Math. Soc. (in press)

  29. Lauret, J., Will, C.E.: Einstein solvmanifolds: existence and non-existence questions. Math. Ann. 350, 199–225 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lauret, J., Will, C.E.: On the diagonalization of the Ricci flow on Lie groups. Proc. Amer. Math. Soc. (in press)

  31. Lott, J.: On the long-time behavior of type-III Ricci flow solutions. Math. Ann. 339, 627–666 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Milnor, J.: Curvature of left-invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  33. Payne, T.: The Ricci flow for nilmanifolds. J. Modern Dyn. 4, 65–90 (2010)

    Article  MATH  Google Scholar 

  34. Shi, W.X.: Deforming the metric on complete Riemannian manifolds. J. Differ. Geom. 30, 223–301 (1989)

    MATH  Google Scholar 

Download references

Acknowledgments

The author is very grateful to Ramiro Lafuente for his guidance in making the figures in this paper, and to him, Mauro Subils and the referee for very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Lauret.

Additional information

This research was partially supported by grants from CONICET (Argentina) and SeCyT (Universidad Nacional de Córdoba).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauret, J. Ricci flow of homogeneous manifolds. Math. Z. 274, 373–403 (2013). https://doi.org/10.1007/s00209-012-1075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1075-z

Keywords

Navigation