Skip to main content
Log in

Path integrals and the essential self-adjointness of differential operators on noncompact manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider Schrödinger operators on possibly noncompact Riemannian manifolds, acting on sections in vector bundles, with locally square integrable potentials whose negative part is in the underlying Kato class. Using path integral methods, we prove that under geodesic completeness these differential operators are essentially self-adjoint on \(\mathsf{C }^{\infty }_0\), and that the corresponding operator closures are semibounded from below. These results apply to nonrelativistic Pauli–Dirac operators that describe the energy of Hydrogen type atoms on Riemannian \(3\)-manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Sect. 3.5 for the definition of \(\mathcal{K }(M)\) and for criteria for functions to be in \(\mathcal{K }(M)\).

  2. Here, \(t \Delta _k =\{0\le s_1\le \dots \le s_k\le t\}\subset \mathbb{R }^k\) denotes the \(t\)-scaled \(k\)-simplex for any \(k\in \mathbb{N }\), \(t\ge 0\).

  3. Of course this inequality can also be deduced with an elementary argument.

  4. A Clifford multiplication \(c\) is a morphism of smooth vector bundles such that for all \(\alpha \in \Omega ^1(M)\) one has

    $$\begin{aligned} c(\alpha )=-c(\alpha )^*,c(\alpha )^*c(\alpha )=|\alpha |^2. \end{aligned}$$
  5. A Clifford connection is a Hermitian connection with the following property: for all \(\alpha \in \Omega ^1(M)\) and all \(X\in \Gamma _{\mathrm{C }^{\infty }}(M,\mathrm{T }M), \psi \in \Gamma _{\mathrm{C }^{\infty }}(M,E)\) one has

    $$\begin{aligned} \nabla _X(c(\alpha )\psi )=c(\nabla ^\mathrm{T M}_X \alpha )\psi + c(\alpha )\nabla _X \psi . \end{aligned}$$

References

  1. Braverman, M., Milatovich, O., Shubin, M.: Essential self-adjointness of Schrödinger-type operators on manifolds. Russian Math. Surv. 57(4), 641–692 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chernoff, P.: Essential self-adjointness of powers of hyperbolic equations. J. Funct. Anal. 12, 401–414 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coulhon, T., Sikora, A.: Gaussian heat kernel upper bounds via the Phragmén–Lindelöf theorem. Proc. Lond. Math. Soc. (3) 96(2), 507–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics, Springer Study Edition, pp. x+319. Springer, Berlin (1987).

  5. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1989)

  6. Dodziuk, J.: Maximum principle for parabolic inequalities and the heat flow on open manifolds. Indiana Univ. Math. J. 32(5), 703–716 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dollard, J.D., Friedman, C.N.: Product Integration. Addison-Wesley, Menlo Park (1979)

    MATH  Google Scholar 

  8. Driver, B.K., Thalmaier, A.: Heat equation derivative formulas for vector bundles. J. Funct. Anal. 183(1), 42–108 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Enciso, A.: Coulomb systems on Riemannian manifolds and stability of matter. Ann. Henri Poincaré 12, 723–741 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gaffney, M.P.: The conservation property of the heat equation on Riemannian manifolds. Commun. Pure Appl. Math. 12, 1–11 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grigor’yan, A.: Heat kernel and analysis on manifolds. AMS/IP Studies in Advanced Mathematics, vol 47. American Mathematical Society/International Press, Providence/Boston (2009)

  12. Grigor’yan, A.: Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differ. Geom. 45, 33–52 (1997)

    MathSciNet  Google Scholar 

  13. Grummt, R., Kolb, M.: Essential selfadjointness of singular magnetic Schrödinger operators on Riemannian manifolds. J. Math. Anal. Appl. 388(1), 480–489 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Güneysu, B.: Kato’s inequality and form boundedness of Kato potentials on arbitrary Riemannian manifolds. Proc. Am. Math. Soc. (2012, in press)

  15. Güneysu, B.: On generalized Schrödinger semigroups. J. Funct. Anal. 262, 4639–4674 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Güneysu, B.: Nonrelativistic hydrogen type stability problems on nonparabolic 3-manifolds. Ann. Henri Poincaré 13, 1557–1573 (2012)

    Article  MATH  Google Scholar 

  17. Hinz, A., Stolz, G.: Polynomial boundedness of eigensolutions and the spectrum of Schrödinger operators. Math. Ann. 294(2), 195–211 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hsu, E.: Stochastic Analysis on Manifolds. Graduate Studies in Mathematics, vol 38. American Mathematical Society, Providence (2002)

  19. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995). Reprint of the 1980 edition

    MATH  Google Scholar 

  20. Kato, T.: Schrödinger operators with singular potentials. Israel J. Math. 13, 135–148 (1972)

    Article  MathSciNet  Google Scholar 

  21. Kuwae, K., Takahashi, M.: Kato class measures of symmetric Markov processes under heat kernel estimates. J. Funct. Anal. 250(1), 86–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lesch, M.: Essential self-adjointness of symmetric linear relations associated to first order systems. Journées Équations aux Dérivées Partielles (La Chapelle sur Erdre, 2000), Exp. No. X, pp. 18, Univ. Nantes, Nantes (2000)

  23. Lieb, E., Seiringer, R.: The stability of matter in quantum mechanics. Cambridge University Press, London (2009)

    Book  MATH  Google Scholar 

  24. Milatovic, O.: Self-adjointness of Schrödinger-type operators with locally integrable potentials on manifolds of bounded geometry. J. Math. Anal. Appl. 295(2), 513–526 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. Academic Press Inc., London (1975)

  26. Shubin, M.: Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds. J. Funct. Anal. 186(1), 92–116 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7(3), 447–526 (1982)

    Article  MATH  Google Scholar 

  28. Stollmann, P., Voigt, J.: Perturbation of Dirichlet forms by measures. Potential Anal. 5(2), 109–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author (BG) is indebted to Ognjen Milatovic for many discussions on essential self-adjointness in the past three years, in particular, for bringing the reference [13] into our attention (which helped us to remove an unnecessary assumption from the original version of Theorem 1.1). Both authors kindly acknowledge the financial support given by the SFB 647 “Space–Time–Matter” at the Humboldt University Berlin, where this work has been started.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Batu Güneysu.

Additional information

O. Post is on leave from Department of Mathematical Sciences, Durham University, England, UK.

Appendices

Appendix A. Friedrichs mollifiers

We record the following result on Friedrichs mollifiers here. Let \(M\) be a smooth connected Riemannian manifold without boundary, \(E\rightarrow M\) a smooth Hermitian vector bundle, \(\nabla \) a Hermitian covariant derivative in \(E\), and \(V :M\rightarrow \mathrm{End}(E)\) a potential.

Proposition A.1

Let \(|V|\in \mathsf{L }^2_\mathrm{loc }(M)\) and assume that \(f\in \Gamma _\mathsf{L ^{\infty }_\mathrm{loc }}(M,E)\) is compactly supported with \(\nabla ^{\dagger }\nabla f\in \Gamma _{ \mathsf{L }^{2}_\mathrm{loc }}(M,E)\) in the sense of distributions. Then there is a sequence \((f_n)_{n\in \mathbb{N }}\subset \Gamma _{\mathsf{C }^{\infty }_0}(M,E)\) such that

$$\begin{aligned}&\lim _{n\rightarrow \infty }\Vert f_n-f\Vert =0,\nonumber \\&\lim _{n\rightarrow \infty }\Vert \nabla ^{\dagger }\nabla f_n -\nabla ^{\dagger }\nabla f\Vert =0,\nonumber \\&\lim _{n\rightarrow \infty }\Vert V f_n -Vf\Vert =0.\nonumber \end{aligned}$$

Remark A.2

Note that one indeed has \(f\in \Gamma _{ \mathsf L ^{2}}(M,E)\), which follows from \(f\in \Gamma _{ \mathsf L ^{\infty }_\mathrm{loc }}(M,E)\) and the fact that \(f\) has a compact support. Furthermore, \(\nabla ^{\dagger }\nabla f\in \Gamma _{ \mathsf L ^{2}}(M,E)\) follows from \(\nabla ^{\dagger }\nabla f\in \Gamma _{ \mathsf L ^{2}_\mathrm{loc }}(M,E)\) and the fact that \(\nabla ^{\dagger }\nabla f\) has a compact support.

Proof of Proposition 4.3

Since most of the arguments should be well-known, we only sketch the proof. Let \(m:=\dim M\) and let \(d\) be the fiber dimension of \(E\). Since \(f\) is compactly supported, we can use a partition of unity argument to assume that \(f\) is supported in a relatively compact coordinate domain \(U\subset M\) (which is identified with an open subset of \(\mathbb{R }^m\)) such that there is a smooth orthonormal frame for \(E\) over \(U\), and we denote the components of \(f\) in this frame with \(f^{(1)},\ldots ,f^{(d)}\). Now take some \(0\le j_r\in \mathsf{C }^{\infty }_0(\mathbb{R }^m)\) with \(j(z)=0\) for \(|z|\ge 1\) and

$$\begin{aligned} \int _{\mathbb{R }^m}j(z)\mathrm{d}z=1. \end{aligned}$$

For \(r>0\) let \(j_r\in \mathsf{C }^{\infty }_0(\mathbb{R }^m)\) be given by \(j_r(z)=r^{-m}j(r^{-1} z)\). Let \(r>0\) be small enough in the following such that the functions

$$\begin{aligned} x\longmapsto \int _{\mathbb{R }^m} j_r(x-y)f^{(i)}(y) \mathrm{d}y,\quad i=1,\dots , d, \end{aligned}$$
(46)

define an element

$$\begin{aligned} f_r\in \Gamma _{\mathsf{C }^{\infty }_0}(U,E)\subset \Gamma _{\mathsf{C }^{\infty }_0}(M,E). \end{aligned}$$

Since the sections \(f_r-f\) and \(\nabla ^{\dagger }\nabla f_r -\nabla ^{\dagger }\nabla f\) are compactly supported, the convergence

$$\begin{aligned} \lim _{r\rightarrow 0+}\Vert f_r-f\Vert =0 \end{aligned}$$
(47)

follows from Lemma 5.13 (ii) in [1], and

$$\begin{aligned} \lim _{r\rightarrow 0+}\Vert \nabla ^{\dagger }\nabla f_r -\nabla ^{\dagger }\nabla f\Vert =0 \end{aligned}$$

follows from the \(\mathsf{L }^2_\mathrm{loc }\)-version of Proposition 5.14 in [1], which can be proven with analogous arguments. Note that so far we have only used that \(f\) is locally square integrable with a compact support.

The local boundedness assumption on \(f\) comes into play as follows: Namely, this assumption combined with the compact support assumption implies that \(f\) is actually bounded and so (46) implies

$$\begin{aligned} |f_r(x)|_x\le \Vert f\Vert _{\infty }\quad \text{ for} \text{ all}\; x, r. \end{aligned}$$
(48)

Since [in view of (47)] we may assume that \(f_r\rightarrow f\) a.e. in \(M\), and since \(f_r\) has a compact support, the required convergence

$$\begin{aligned} \lim _{r\rightarrow 0+}\Vert V f_r -V f \Vert =0 \end{aligned}$$

now follows from (48) and dominated convergence. \(\square \)

Appendix B. Finite speed of propagation

The following lemma is usually referred to as Chernoff’s finite speed of propagation method [2]. Let \(M\) be a smooth connected Riemannian manifold without boundary, and let \(E\rightarrow M\) be a smooth Hermitian vector bundle.

Lemma B.1

Let \(S\) be a self-adjoint nonnegative operator in \(\Gamma _\mathsf{L ^{2}}(M,E)\). Assume furthermore that \(\mathsf{D }^0(S)\), the compactly supported elements of \(\mathsf{D }(S)\), are dense in \(\Gamma _\mathsf{L ^{2}}(M,E)\) and that for any \(f\in \mathsf{D }^0(S)\) and any \(t>0\), the section \(\cos (t\sqrt{S})f\) has a compact support. Then \(\mathsf{D }^0(S)\) is an operator core for \(S\).

Proof

The proof is a straightforward generalisation of the proof of Theorem 3 in [13]. \(\square \)

Appendix C. Path ordered exponentials

In the following lemma, we collect some known facts about path ordered exponentials for the convenience of the reader:

Lemma 6.1

Let \({\fancyscript{H}}\) be a finite dimensional Hilbert space, let \(T\in (0,\infty ]\) and let \(F\in \mathsf L ^1_\mathrm{loc }([0,T),{\fancyscript{L}}({\fancyscript{H}}))\). Then the following assertions hold:

  1. (a)

    There is a unique weak (\(=\mathsf{AC }_\mathrm{loc }\)) solution \(Y:[0,T)\rightarrow {\fancyscript{L}}({\fancyscript{H}})\) of the ordinary initial value problem

    $$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} Y(t)=Y(t)F(t),Y(0)=\mathbf 1 . \end{aligned}$$
    (49)
  2. (b)

    For any \(0\le t<T\) one has

    $$\begin{aligned} Y(t)=\mathbf 1 +\sum ^{\infty }_{k=1}\,\,\,\int _{0\le s_1\le \ldots \le s_k\le t} F(s_1)\ldots F(s_k) \mathrm{d}s_1\dots \mathrm{d}s_k. \end{aligned}$$
    (50)
  3. (c)

    If \(F(\bullet )\) is Hermitian a.e. in \([0,T)\) and if there exists a real-valued function \(c\in \mathsf L ^1_\mathrm{loc }[0,T)\) such that for all \(v\in {\fancyscript{H}}\) it holds that

    $$\begin{aligned} \langle F(\bullet ) v, v\rangle _{{\fancyscript{H}}}\le c(\bullet ) \Vert v\Vert ^2_{{\fancyscript{H}}\quad }\text{ a.e.} \text{ in}\; [0,T), \end{aligned}$$

    then one has

    $$\begin{aligned} \Vert Y(t)\Vert _{{\fancyscript{H}}}\le \text{ e}^{\int ^t_0 c(s) \mathrm{d}s}\quad \mathrm{for\;all}\; 0\le t<T. \end{aligned}$$

Proof

See [7] and the Appendix C of [15]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güneysu, B., Post, O. Path integrals and the essential self-adjointness of differential operators on noncompact manifolds. Math. Z. 275, 331–348 (2013). https://doi.org/10.1007/s00209-012-1137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1137-2

Keywords

Navigation