Skip to main content
Log in

Invariant Hilbert schemes and desingularizations of symplectic reductions for classical groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(G \subset GL(V)\) be a reductive algebraic subgroup acting on the symplectic vector space \(W=(V \oplus V^*)^{\oplus m}\), and let \(\mu :\ W \rightarrow Lie(G)^*\) be the corresponding moment map. In this article, we use the theory of invariant Hilbert schemes to construct a canonical desingularization of the symplectic reduction \(\mu ^{-1}(0)/\!/G\) for classes of examples where \(G=GL(V)\), \(O(V)\), or \(Sp(V)\). For these classes of examples, \(\mu ^{-1}(0)/\!/G\) is isomorphic to the closure of a nilpotent orbit in a simple Lie algebra, and we compare the Hilbert–Chow morphism with the (well-known) symplectic desingularizations of \(\mu ^{-1}(0)/\!/G\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeev, V., Brion, M.: Moduli of affine schemes with reductive group action. J. Algeb. Geom. 14, 83–117 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beauville, A.: Symplectic singularities. Invent. Math. 139(3), 541–549 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Becker, T.: On the existence of symplectic resolutions of symplectic reductions. Math. Z. 265, 343–363 (2009)

    Article  Google Scholar 

  4. Becker, T.: An example of an \(SL_2\)-Hilbert scheme with multiplicities. Transform. Groups 16(4), 915–938 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brion, M.: Représentations exceptionnelles des groupes semi-simples. Ann. Sci. Ecole Norm. Sup. 2, 345–387 (1985)

    MathSciNet  Google Scholar 

  6. Brion, M.: Invariant Hilbert schemes. In: Handbook of Moduli: Volume I, Advanced Lectures in Mathematics, vol. 24, pp. 63–118. Fordham University, New York (2013)

  7. Collingwood, D., McGovern. Nilpotent orbits in semisimple Lie algebras. Van Nostrand Reinhold Mathematics Series, vol. 296. Van Nostrand Reinhold Co., New York (1993)

  8. Fu, B., Namikawa, Y.: Uniqueness of crepant resolutions and symplectic singularities. Ann. Inst. Fourier (Grenoble) 54, 1–19 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fu, B.: Symplectic resolutions for nilpotent orbits. Invent. Math. 151, 167–186 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fu, B.: Symplectic resolutions for nilpotent orbits (II). C. R. Acad. Sci. Paris 337, 277–281 (2003)

    Article  MATH  Google Scholar 

  11. Fu, B.: A survey on symplectic singularities and resolutions. Ann. Math. Blaise Pascal 13, 209–236 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fu, B.: Symplectic resolutions for nilpotent orbits (III). C. R. Acad. Sci. Paris 342, 585–588 (2006)

    Article  MATH  Google Scholar 

  13. Kraft, H., Procesi, C.: Closures of conjugacy classes of matrices are normal. Invent. Math. 53, 227–247 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kraft, H., Procesi, C.: Minimal singularities in \(GL_n\). Invent. Math. 62, 503–515 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kraft, H., Procesi, C.: On the geometry of conjugacy classes in classical groups. Comment. Math. Helvetici 57, 539–602 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kraft, H., Schwarz, G.W.: Representations with a reduced null cone. ArXiv: 1112.3634, to appear in Progress in Mathematics (Birkhäuser), a volume in honor of Nolan Wallach

  17. Namikawa, Y.: Birational geometry of symplectic resolutions of nilpotent orbits. In: Moduli Spaces and Arithmetic Geometry, vol. 45, pp. 75–116. Math. Soc., Japan, Tokyo, Adv. Stud. Pure Math. (2006)

  18. Procesi, C.: Lie Groups, an Approach through Invariants and Representations. Universitext. Springer, New York (2007)

    Google Scholar 

  19. Schwarz, G.W., Brion, M.: Théorie des invariants et géométrie des variétés quotients. Travaux en cours, vol. 61. Hermann, Paris (2000)

  20. Terpereau, R.: Invariant Hilbert schemes and desingularizations of quotients by classical groups. ArXiv: 1301.4020, to appear in Transform. Groups

  21. Terpereau, R.: Schémas de Hilbert invariants et théorie classique des invariants (Ph.D. thesis). ArXiv: 1211.1472

Download references

Acknowledgments

I am deeply thankful to Michel Brion for proposing this subject to me, for a lot of helpful discussions, and for his patience. I thank Tanja Becker for exchange of knowledge on invariant Hilbert schemes by e-mail and during her stay in Grenoble in October 2010. I also thank Bart Van Steirteghem for helpful discussions during his stay in Grenoble in Summer 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronan Terpereau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terpereau, R. Invariant Hilbert schemes and desingularizations of symplectic reductions for classical groups. Math. Z. 277, 339–359 (2014). https://doi.org/10.1007/s00209-013-1259-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1259-1

Keywords

Navigation