Skip to main content
Log in

Complete non-compact gradient Ricci solitons with nonnegative Ricci curvature

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we give a rigidity theorem for a complete non-compact expanding (or steady) Ricci soliton with nonnegative Ricci curvature and certain scalar curvature decay condition. As an application, we prove that any complete non-compact expanding (or steady) Kähler-Ricci solitons with positively pinched Ricci curvature should be Ricci flat. The result answers a question proposed by Chow, Lu and Ni in case of Kähler-Ricci solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There is a more general conjecture proposed by Ni about the rigidity of complete non-compact Riemannian manifolds with positive pinched Ricci curvature [23].

References

  1. Brendle, S.: Rotational symmetry of self-similar solutions to the Ricci flow. Invent. Math. 194(3), 731–764 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bryant, R.: Ricci flow solitons in dimension three with SO(3)-symmetries, http://www.math.duke.edu/bryant/3DRotSymRicciSolitons

  3. Bryant, R.: Gradient Kähler Ricci Solitons. Gomtrie Diffrentielle, Physique Mathmatique, Mathmatiques et socit. I. Astrisque No. 321, 5197 (2008)

  4. Cao, H.-D.: Existence of gradient Kähler-Ricci solitons, Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), A K Peters. Wellesley, MA, pp. 1–16 (1996)

  5. Cao, H.-D.: Limits of solutions to the Kähler-Ricci flow. J. Differ. Geom. 45, 257–272 (1997)

    MATH  Google Scholar 

  6. Cao, H.-D.: On dimension reduction in the Kähler-Ricci flow. Commun. Anal. Geom. 12(1), 305–320 (2004)

    Article  MATH  Google Scholar 

  7. Cao, H.-D., Chen, B.-L., Zhu, X.-P.: Recent developments on Hamilton’s Ricci flow. Surv. J. Differ. Geom. 12, 47–112 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci flow. In: Lectures in Contemporary Mathematics 3, Science Press, Beijing & American Mathematical Society, Providence, Rhode Island (2006)

  9. Carrillo, J., Ni, L.: Sharp logarithmic Sobolev Inequalities on soliton and applications Comm. Anal. Geom. 17(4), 721–753 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chau, A., Tam, L-F.: Grandient Kähler-Ricci Solitons and a uniformization conjecture, arXiv:math/0310198v1

  11. Chau, A., Tam, L.-F.: A note on the uniformization of gradient Kähler-Ricci solitons. Math. Res. Lett. 12(1), 19–21 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chau, A., Tam, L.-F.: On the complex structure of Kähler manifolds with nonnegative curvature. J. Differ. Geom. 73, 491–530 (2006)

    MATH  MathSciNet  Google Scholar 

  13. Chau, A., Tam, L.-F.: Non-negatively curved Kähler manifolds with average quadratic curvature decay. Commun. Anal. Geom. 15(1), 121–146 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chau, A., Tam, L.-F.: On the simply connectedness of nonnegatively curved Kähler manifolds and applications. Trans. Am. Math. Soc. 363, 6291–6308 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hamilton, R.S.: Three manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    MATH  Google Scholar 

  16. Hamilton, R.S.: The Harnack estimate for the Ricci flow. J. Differ. Geom. 37, 225–243 (1993)

    MATH  Google Scholar 

  17. Hamilton, R.S.: Formation of singularities in the Ricci flow. Surv. Differ. Geom. 2, 7–136 (1995)

    Article  Google Scholar 

  18. Li, P., Yau, S.-T.: On the parabolic kernel of the Schördinger operator. Acta Math. 156, 139–168 (1986)

    Article  MathSciNet  Google Scholar 

  19. Naber, A.: Noncompact shrinking four solitons with nonnegative curvature. Journal fr die reine und angewandte Mathematik 645, 125–153 (2010)

    MATH  MathSciNet  Google Scholar 

  20. Ni, L.: Ancient solutions to Kähler-Ricci flow. In: Third International Congress of Chinese Mathematicians. Part 1, 2, 279289, AMS/IP Stud. Adv. Math., 42, pt. 1, 2, Am. Math. Soc., Providence, RI (2008)

  21. Ni, L.: An optimal gap theorem. Invent. Math. 189(3), 737–761 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ni, L., Tam, L.-F.: Kähler-Ricci flow and Poincaré–Lelong equation. Commun. Anal. Geom. 12(1), 111–141 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ni, L.: Complete manifolds with nonnegative curvature operator. Proc. Am. Math. Soc. 135(9), 3021–3028 (2007)

    Article  MATH  Google Scholar 

  24. Ni, L., Shi, Y.-G., Tam, L.-F.: Poisson equation, Poincaré–Lelong equation and curvature decay on complete Kähler manifolds. J. Differ. Geom. 57, 339–388 (2001)

    MATH  MathSciNet  Google Scholar 

  25. Ni, L., Shi, Y.-G., Tam, L.-F.: Ricci flatness of asymptotically loclally Euclidean metrics. Trans. Am. Math. Soc. 355(5), 1933–1959 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Perelman, G.: Ricci flow with surgery on three-manifolds., arXiv:math/0303109v1

  27. Petrunin, A., Tuschmann, W.: Asymptotical flatness and cone structure at infinity. Math. Ann. 321, 775–788 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shi, W.-X.: Ricci flow and the uniformization on complete noncompact Kähler manifolds. J. Differ. Geom. 45, 94–220 (1997)

    MATH  Google Scholar 

  29. Tam, L.-F.: Liouville properties of harmonic maps. Math. Res. Lett. 2, 719–735 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhang, Z.-H.: On the completeness of gradient Ricci solitons. Proc. Am. Math. Soc. 137, 2755–2759 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are appreciated to the referee for suggestions to improve presentation of our paper, particularly, valuable discussions on the reference [22].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Zhu.

Additional information

Partially supported by the NSFC Grants 11271022 and 11331001.

Appendix

Appendix

In this appendix, we compute the curvature decay of a family of expanding Käher-Ricci solions on \({\mathbb {C}}^n\) constructed by Cao in [5]. The curvature decay of these solitons implies that the curvature decay condition in Theorem 1.3 is almost optimal (see Proposition 6.1). Cao has also constructed the steady Käher-Ricci solitons in [4]. Similarly, one can show that these steady solitons have an exponential decay in case of \(n=1\) and a linear decay in case of \(n\ge 2\), pointwisely.

We first recall Cao’s construction. Let \((z_{1},z_{2},\ldots ,z_{n})\) be the standard holomorphic coordinates on \({\mathbb {C}}^{n}\). Assume that \(g=(g_{i\bar{j}})\) is a U(n)-invariant metric on \({\mathbb {C}}^{n}\) and the corresponding Kähler potential is given by \(u(t)\), where \(u(t)\) is a strictly increasing and convex function on \((-\infty ,\infty )\) and \(t=\ln |z|^{2}\). By a direct computation,

$$\begin{aligned} g_{i\bar{j}}&=\partial _{i}\partial _{\bar{j}}u(t)=e^{-t}u'(t)\delta _{ij}+e^{-2t}\bar{z}_{i}z_{j}(u''(t)-u'(t)),\\ g^{i\bar{j}}&=\partial _{i}\partial _{\bar{j}}u(t)=e^{t}u'(t)^{-1}\delta _{ij}+z_{i}\bar{z}_{j}(u''(t)-u'(t)), \end{aligned}$$

and

$$\begin{aligned} f(t)\triangleq -\ln \det (g_{i\bar{j}})=nt-(n-1)\ln u'(t)-\ln u''(t). \end{aligned}$$

Then

$$\begin{aligned} R_{i\bar{j}}=\partial _{i}\partial _{\bar{j}}f(t)=e^{-t}f'(t)\delta _{ij}+e^{-2t}\bar{z}_{i}z_{j}(f''(t)-f'(t)). \end{aligned}$$

One may check that \(g_{i\bar{j}}\) is an expanding soliton if and only if

$$\begin{aligned} v^{i}\frac{\partial }{\partial z_i}= g^{i\bar{j}}\partial _{\bar{j}}(f+u)\frac{\partial }{\partial z_i}=\left( z_{i}\frac{f'+u'}{u''}\right) \frac{\partial }{\partial z_i} \end{aligned}$$

is a holomorphic vector field, which is equivalent to

$$\begin{aligned} f'+u'=\lambda u'', \end{aligned}$$
(6.1)

for some constant \(\lambda \).

Let \(\phi =u'\). Then, by (6.1), we get an equation for \(\phi \),

$$\begin{aligned} \frac{\phi ''}{\phi '}+\left( \frac{n-1}{\phi }+\lambda \right) \phi '=n+\phi . \end{aligned}$$
(6.2)

Cao solved (6.2) by

$$\begin{aligned} \phi '=\frac{1}{\lambda ^{n+1}\phi ^{n-1}}\left( \lambda ^{n}\phi ^{n}+\sum _{j=0}^{n-1}(-1)^{n-j}\frac{n!}{j!}(1-\lambda )\lambda ^{j}\phi ^{j}+ce^{-\lambda \phi }\right) , \end{aligned}$$
(6.3)

where \(c\) is a constant. It was proved that \(g_{i\bar{j}}\) is a complete expanding Kähler-Ricci soliton by taking \(c=(-1)^{n+1}n!(1-\lambda )\) for all \(\lambda >0\). Moreover, these solitons have positive sectional curvature in case of \(\lambda >1\) and negative sectional curvature in case of \(0<\lambda <1\). For all \(\lambda >0\), we prove the following proposition.

Proposition 6.1

The scalar curvature of Cao’s expanding solitons satisfies the following curvature property:

$$\begin{aligned} \frac{\lambda -1}{e^{\epsilon _{2} r^{2}(x)}}&\le R(x)\le \frac{\lambda -1}{e^{\epsilon _{1} r^{2}(x)}},\quad \mathrm{if}\; n=1;\end{aligned}$$
(6.4)
$$\begin{aligned} C_1\frac{\lambda -1}{1+r^{2}(x)}&\le R(x)\le C_2\frac{\lambda -1}{1+r^{2}(x)},\quad \mathrm{if}\;n\ge 2; \end{aligned}$$
(6.5)

and

$$\begin{aligned} C_1\frac{\lambda -1}{1+r^{2}}\le \frac{1}{\mathrm{vol}(B_{r}(o))}\int _{B_{r}(o)}R\mathrm{dv}\le C_2\frac{\lambda -1}{1+r^{2}},~\mathrm{if}~n\ge 1. \end{aligned}$$
(6.6)

Proof

By (6.3), it is easy to see

$$\begin{aligned} t=\int _{0}^{\phi }\frac{\lambda \mathrm{d}s}{s+\text{ higher } \text{ order } \text{ term }}. \end{aligned}$$

This means that \(\phi \) is asymptotic to \(e^{\frac{t}{\lambda }}\) as \(t\rightarrow +\infty \), and \(\phi '\) is asymptotic to \(\frac{1}{\lambda }e^{\frac{t}{\lambda }}\) as \(t\rightarrow +\infty \). Let \(o=(0,0,\ldots ,0)\) and \(p=(z_{1},0,\ldots ,0)\). Since the metric \(g\) is U(n)-invariant, \((sz_{1},0,\ldots ,0)\) \((o\le s\le 1)\) is a geodesic curve which connecting \(o\) and \(p\). Thus

$$\begin{aligned} r(p)=d(o,p)=\int _{0}^{1}\sqrt{g_{1\bar{1}}}\mathrm{ds}=\frac{1}{2}\int _{-\infty }^{t}\sqrt{\phi '}\mathrm{dt}. \end{aligned}$$

This shows that \(r\) is asymptotic to \(\sqrt{\lambda }e^{\frac{t}{2\lambda }}\) as \(t\rightarrow +\infty \). Hence, we get

$$\begin{aligned} \phi = O(r^{2}),~ \phi '=O(r^{2}). \end{aligned}$$
(6.7)

Also, we have

$$\begin{aligned}&g^{1\bar{1}}(p)=e^{t}(\phi ')^{-1},\quad R_{1\bar{1}}(p)=-e^{-t}\left( \left( n-1\right) \left( \frac{\phi '}{\phi }\right) '+\left( \frac{\phi ''}{\phi '}\right) '\right) ,\\&g^{i\bar{j}}(p)=0,\quad R_{i\bar{j}}(p)=0, ~\quad \forall \quad i \ne j,\\&g^{i\bar{i}}(p)=e^{t}(\phi )^{-1},\quad R_{i\bar{i}}(p)=e^{-t}\left( n-\left( n-1\right) \left( \frac{\phi '}{\phi }\right) -\left( \frac{\phi ''}{\phi '}\right) \right) , ~i\ge 2. \end{aligned}$$

In case \(n=1\). By (6.7), we have

$$\begin{aligned} \mathrm{vol}(B_{r}(o))&=\int _{0}^{r}\int _{\partial B_{s}(o)}\det (g_{i\bar{j}})r\mathrm{d\sigma }\mathrm{dr}=2\pi \int _{0}^{r}\frac{\phi '}{r}\mathrm{dr}=O(r^2). \end{aligned}$$
(6.8)

On the other hand, differentiating (6.3), we have

$$\begin{aligned} \frac{\phi ''}{\phi '}=\frac{1}{\lambda }+\frac{\lambda -1}{\lambda }e^{-\lambda \phi }. \end{aligned}$$

Then

$$\begin{aligned} R(p)=g^{1\bar{1}}(p)R_{1\bar{1}}(p)=-(\phi ')^{-1}\left( \frac{\phi ''}{\phi '}\right) '=(\lambda -1)e^{-\lambda \phi }. \end{aligned}$$

It follows

$$\begin{aligned} \int _{B_{r}(o)}R\mathrm{dv}=2\pi \int _{0}^{r}(\lambda -1)e^{-\lambda \phi }\frac{\phi '}{r}\mathrm{dr}. \end{aligned}$$

Thus by (6.7), we get (we may assume \(\lambda \ge 1\) for simplicity)

$$\begin{aligned} \frac{1}{C'}(\lambda -1)\le \int _{B_{r}(o)}R\mathrm{dv}\le C' (\lambda -1). \end{aligned}$$
(6.9)

Hence, (6.4) follows from (6.8) and (6.9).

In case \(n\ge 2\). Differentiating (6.3) and (6.2), respectively, we have

$$\begin{aligned} \frac{\phi ''}{\phi '}&=\frac{1}{\lambda }+\frac{1}{\lambda ^{n+1}}\left( \sum _{j=0}^{n-2}(-1)^{n-j}(j-n+1)\frac{n!}{j!}(1-\lambda )\lambda ^{j}\phi ^{j-n} \right) +o_{1},\\ \left( \frac{\phi ''}{\phi '}\right) '&=\frac{\phi '}{\lambda ^{n+1}}\left( \sum _{j=0}^{n-2}(-1)^{n-j}(j-n+1)(j-n)\frac{n!}{j!}(1-\lambda )\lambda ^{j}\phi ^{j-n-1}\right) +o_{2}, \end{aligned}$$

where

$$\begin{aligned} o_{1}&= -\frac{c}{\lambda ^{n+1}}\left( \frac{n-1}{\phi ^{n}}+\frac{\lambda }{\phi ^{n-1}}\right) e^{-\lambda \phi },\\ o_{2}&= \frac{c}{\lambda ^{n+1}}\left( \frac{n(n-1)}{\phi ^{n+1}}+\frac{2\lambda (n-1)}{\phi ^{n}}\frac{\lambda }{\phi ^{n-1}}+\frac{\lambda ^{2}}{\phi ^{n-1}}\right) e^{-\lambda \phi }. \end{aligned}$$

On the other hand, by (6.2), we have

$$\begin{aligned} \frac{\phi '}{\phi }&= \frac{1}{\lambda }+\frac{1}{\lambda ^{n+1}}\left( \sum _{j=0}^{n-1}(-1)^{n-j}\frac{n!}{j!}(1-\lambda )\lambda ^{j}\phi ^{j-n}+c\phi ^{-n}e^{-\lambda \phi }\right) ,\\ \left( \frac{\phi '}{\phi }\right) '&= \frac{\phi '}{\lambda ^{n+1}}\left( \sum _{j=0}^{n-2}(-1)^{n-j}(j-n)\frac{n!}{j!}(1-\lambda )\lambda ^{j}\phi ^{j-n-1}\right) +o_{3}, \end{aligned}$$

where

$$\begin{aligned} o_{3}=-\frac{c}{\lambda ^{n+1}}\left( \frac{n}{\phi ^{n+1}}+\frac{\lambda }{\phi ^{n}}\right) e^{-\lambda \phi }. \end{aligned}$$

Thus we get

$$\begin{aligned} \frac{\phi ''}{\phi '}\rightarrow \frac{1}{\lambda }, \left( \frac{\phi ''}{\phi '}\right) '\rightarrow 0,\; \frac{\phi '}{\phi }\rightarrow \frac{1}{\lambda }, \; \left( \frac{\phi '}{\phi }\right) '\rightarrow 0,\quad \mathrm{as}\; t\rightarrow +\infty . \end{aligned}$$
(6.10)

Since

$$\begin{aligned} \phi R(p)=\phi g^{i\bar{j}}R_{i\bar{j}}=-\frac{\phi }{\phi '}\left( \left( \frac{\phi '}{\phi }\right) '+\left( \frac{\phi ''}{\phi '}\right) '\right) +(n-1)\left( n-(n-1)\frac{\phi '}{\phi }-\frac{\phi ''}{\phi '}\right) , \end{aligned}$$

by (6.10), we obtain

$$\begin{aligned} \phi R(p)\rightarrow n(n-1)\frac{\lambda -1}{\lambda },~\mathrm{as}~~t\rightarrow +\infty . \end{aligned}$$

It follows

$$\begin{aligned} C_1\frac{\lambda -1}{1+r^{2}} \le R(p)\le C_2\frac{\lambda -1}{1+r^{2}}. \end{aligned}$$

This proves (6.5). (6.6) follows from (6.4)and (6.5) by using the argument in Lemma 3.1.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Zhu, X. Complete non-compact gradient Ricci solitons with nonnegative Ricci curvature. Math. Z. 279, 211–226 (2015). https://doi.org/10.1007/s00209-014-1363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-014-1363-x

Keywords

Mathematics Subject Classification

Navigation