Skip to main content
Log in

Genus of vertex algebras and mass formula

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We introduce the notion of a genus and its mass for vertex algebras. For lattice vertex algebras, their genera are the same as those of lattices, which play an important role in the classification of lattices. We derive a formula relating the mass for vertex algebras to that for lattices, and then give a new characterization of some holomorphic vertex operator algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borcherds, R.: Vertex algebras, Kac–Moody algebras, and the Monster. Proc. Nat. Acad. Sci. USA 83(10), 3068–3071 (1986)

    Article  MathSciNet  Google Scholar 

  2. Borcherds, R.: Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109(2), 405–444 (1992)

    Article  MathSciNet  Google Scholar 

  3. Carnahan, S.: Building vertex algebras from parts. Commun. Math. Phys. 373(1), 1–43 (2020)

    Article  MathSciNet  Google Scholar 

  4. Creutzig, T., Kanade, S., Linshaw, A.: Simple current extensions beyond semi-simplicity. Commun. Contemp. Math. 22(1), 1950001, 49 (2020)

    Article  MathSciNet  Google Scholar 

  5. Conway, J., Sloane, N.: Sphere Packings, Lattices and Groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, 2nd edn. Springer, New York (1993)

    Google Scholar 

  6. Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators, Progress in Mathematics, vol. 112. Birkhäuser Boston Inc, Boston (1993)

    Book  Google Scholar 

  7. Dong, C., Li, H., Mason, G.: Regularity of rational vertex operator algebras. Adv. Math. 132(1), 148–166 (1997)

    Article  MathSciNet  Google Scholar 

  8. Dong, C., Mason, G.: Holomorphic vertex operator algebras of small central charge. Pac. J. Math. 213(2), 253–266 (2004)

    Article  MathSciNet  Google Scholar 

  9. Dong, C., Mason, G.: Rational vertex operator algebras and the effective central charge. Int. Math. Res. Not. 56, 2989–3008 (2004)

    Article  MathSciNet  Google Scholar 

  10. Dong, C., Ren, L.: Representations of the parafermion vertex operator algebras. Adv. Math. 315, 88–101 (2017)

    Article  MathSciNet  Google Scholar 

  11. van Ekeren, J., Möller, S., Scheithauer, N.: Construction and classification of holomorphic vertex operator algebras. J. Reine Angew. Math. 759, 61–99 (2020)

    Article  MathSciNet  Google Scholar 

  12. Frenkel, I., Huang, Y., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Am. Math. Soc. 104, 494 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster, Pure and Applied Mathematics, vol. 134. Academic Press Inc, Boston (1988)

    MATH  Google Scholar 

  14. Frenkel, I., Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66(1), 123–168 (1992)

    Article  MathSciNet  Google Scholar 

  15. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic Tensor Category Theory for Generalized Modules for a Conformal Vertex Algebra, I: Introduction and Strongly Graded Algebras and Their Generalized Modules, Conformal Field Theories and Tensor Categories, Mathematical Lectures, pp. 169–248. Peking University, Beijing (2014)

    MATH  Google Scholar 

  16. Humphreys, J.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9. Springer, New York (1978). (Second printing, revised)

    Google Scholar 

  17. Höhn, G., Scheithauer, N.: A natural construction of Borcherds’ fake Baby Monster Lie algebra. Am. J. Math. 125(3), 655–667 (2003)

    Article  MathSciNet  Google Scholar 

  18. Höhn, G., Scheithauer, N.: A generalized Kac–Moody algebra of rank 14. J. Algebra 404, 222–239 (2014)

    Article  MathSciNet  Google Scholar 

  19. Höhn, G.: Genera of vertex operator algebras and three-dimensional topological quantum field theories, Vertex operator algebras in mathematics and physics (Toronto, ON, 2000). Fields Inst. Commun. 39, 89–107 (2000)

    Google Scholar 

  20. Höhn, G.: On the Genus of the Moonshine Module, q-alg:1708.05990

  21. Kitaoka, Y.: Arithmetic of Quadratic Forms, Cambridge Tracts in Mathematics, vol. 106. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  22. Kneser, M., Puppe, D.: Quadratische Formen und Verschlingungsinvarianten von Knoten. Math. Z. 58, 376–384 (1953)

    Article  MathSciNet  Google Scholar 

  23. Li, H.: Symmetric invariant bilinear forms on vertex operator algebras. J. Pure Appl. Algebra 96(3), 279–297 (1994)

    Article  MathSciNet  Google Scholar 

  24. Li, H.: The physics superselection principle in vertex operator algebra theory. J. Algebra 196(2), 436–457 (1997)

    Article  MathSciNet  Google Scholar 

  25. Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations, Progress in Mathematics, vol. 227. Birkhäuser Boston Inc, Boston (2004)

    Book  Google Scholar 

  26. Lam, C., Shimakura, H.: Quadratic spaces and holomorphic framed vertex operator algebras of central charge 24. Proc. Lond. Math. Soc. (3) 104(3), 540–576 (2012)

    Article  MathSciNet  Google Scholar 

  27. Lam, C., Shimakura, H.: Classification of holomorphic framed vertex operator algebras of central charge 24. Am. J. Math. 137(1), 111–137 (2015)

    Article  MathSciNet  Google Scholar 

  28. Mason, G.: Vertex rings and their Pierce bundles, Vertex algebras and geometry. Contemp. Math. 711, 45–104 (2018)

    Article  Google Scholar 

  29. Roitman, M.: Combinatorics of free vertex algebras. J. Algebra 255(2), 297–323 (2002)

    Article  MathSciNet  Google Scholar 

  30. Schellekens, A.: Meromorphic \(c=24\) conformal field theories. Commun. Math. Phys. 153(1), 159–185 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to Professor Atsushi Matsuo, for his encouragement throughout this work and numerous advices to improve this paper. He is also grateful to Hiroki Shimakura and Shigenori Nakatsuka for careful reading of this manuscript and their valuable comments. This work was supported by the Program for Leading Graduate Schools, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuto Moriwaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriwaki, Y. Genus of vertex algebras and mass formula. Math. Z. 299, 1473–1505 (2021). https://doi.org/10.1007/s00209-021-02702-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02702-0

Navigation