Skip to main content

Advertisement

Log in

Metformin increases phagocytosis and acidifies lysosomal/endosomal compartments in AMPK-dependent manner in rat primary microglia

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 04 February 2017

Abstract

Recent evidence suggests that metformin shows beneficial effects in experimental models of neuroinflammatory diseases. The aim of the present study was to determine the effect of metformin on phagocytosis and acidification of lysosomal/endosomal compartments in rat primary microglia in the presence of lipopolysaccharide (LPS) and/or beta-peptides (25–35), (1–40), and (1–42). Metformin increased the phagocytosis of fluorescent microspheres in the presence or absence of all the beta-peptides. However, the drug had no effect on the phagocytosis in LPS-stimulated microglia regardless of the presence of all the beta-peptides. Metformin acidified the lysosomal/endosomal compartments in the presence or absence of the beta-peptide 1–40 in both resting and activated microglia. To elucidate the mechanism of metformin action, we used 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside as an activator of adenosine monophosphate-activated protein kinase (AMPK) and compound C as a confirmed pharmacological inhibitor of AMPK. We have shown that metformin increased AMPK activity in microglial cells and that all observed effects are AMPK-dependent because the pretreatment of microglia with compound C reversed the effects of the drug. Since degradation of proteins in lysosomal/endosomal compartments depends largely on their phagocytosis and acidification, metformin may be beneficial in proteinopathies affecting the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AICAR:

5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside

AMPK:

Adenosine monophosphate-activated protein kinase

BrdU:

5-Bromo-2′-deoxyuridine

DMEM:

Dulbecco's modified Eagle's medium

FBS:

Fetal bovine serum

GFAP:

Glial fibrillary acidic protein

IOD:

Integrated optical density

LPS:

Lipopolysaccharide

MAP-2:

Microtubule associating protein-2

MTT:

3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolinum bromide

RCA-1:

Ricinus Communis Agglutinin-1

RPMI-1640 Medium:

Roswell Park Memorial Institute-1640 Medium

TBST:

Tris-buffered saline Tween 20

SD:

Standard deviation

References

  • Ayasolla KR, Singh AK, Singh I (2005) 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) attenuates the expression of LPS- and Abeta peptide-induced inflammatory mediators in astroglia. J Neuroinflammation 20:2–21

    Google Scholar 

  • Banati RB, Egensperger R, Maassen A, Hager G, Kreutzberg GW, Graeber MB (2004) Mitochondria in activated microglia in vitro. J Neurocytol 33:535–541

    Article  PubMed  Google Scholar 

  • Beckner ME, Gobbel GT, Abounader R, Burovic F, Agostino NR, Laterra J, Pollack IF (2005) Glycolytic glioma cells with active glycogen synthase are sensitive to PTEN and inhibitors of PI3K and gluconeogenesis. Lab Invest 85:1457–1470

    Article  CAS  PubMed  Google Scholar 

  • Davies SP, Carling DG, Hardie DG (1989) Tissue distribution of the AMP-activated protein kinase and lack of activation by cyclic-AMP-dependent protein kinase studied using a specific and sensitive peptide assay. Eur J Biochem 186:123–128

    Article  CAS  PubMed  Google Scholar 

  • Dunn KW, Park J, Semrad CE, Gelman DL, Shevell T, McGraw TE (1994) Regulation of endocytic trafficking and acidification are independent of the cystic fibrosis transmembrane regulator. J Biol Chem 269:5336–5345

    CAS  PubMed  Google Scholar 

  • El-Mir MY, Detaille D, R-Villanueva G, Delgado-Esteban M, Guigas B, Attia S, Fontaine E, Almeida A, Leverve X (2008) Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mo Neurosci 34:77–87

    Article  CAS  Google Scholar 

  • Giri S, Nath N, Smith B, Viollet B, Singh AK, Singh I (2004) 5-Aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase. J Neurosci 24:479–487

    Article  CAS  PubMed  Google Scholar 

  • Hallows KR, Alzamora R, Li H, Gong F, Smolak C, Neumann D, Pastor-Soler NM (2009) AMP-activated protein kinase inhibits alkaline pH- and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells. Am J Physiol Cell Physiol 296:672–681

    Article  CAS  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia active sensor and versatile effectors cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271:27879–27887

    Article  CAS  PubMed  Google Scholar 

  • Isoda K, Young JL, Zirlik A, MacFarlane LA, Tsuboi N, Gerdes N, Schönbeck U, Libby P (2006) Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler Thromb Vasc Biol 26:611–617

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Yoon MY, Choi SL, Kang I, Kim SS, Kim YS, Choi YK, Ha J (2001) Effects of stimulation of AMP-activated protein kinase on insulin-like growth factor 1- and epidermal growth factor-dependent extracellular signal-regulated kinase pathway. J Biol Chem 276:19102–19110

    Article  CAS  PubMed  Google Scholar 

  • Koenigsknecht J, Landreth G (2004) Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci 3:9838–9846

    Article  CAS  Google Scholar 

  • Kopec KK, Carroll RT (1998) Alzheimer's beta-amyloid peptide 1–42 induces a phagocytic response in murine microglia. J Neurochem 71:2123–2131

    CAS  PubMed  Google Scholar 

  • Kuo CL, Ho FM, Chang MY, Prakash E, Lin WW (2008) Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 gene expression by 5- aminoimidazole-4-carboxamide riboside is independent of AMP-activated protein kinase. J Cell Biochem 103:931–940

    Article  CAS  PubMed  Google Scholar 

  • Kurz T, Leake A, von Zglinicki T, Brunk UT (2004) Relocalized redox-active lysosomal iron is an important mediator of oxidative-stress-induced DNA damage. Biochem J 378:1039–1045

    Article  CAS  PubMed  Google Scholar 

  • Labuzek K, Kowalski J, Gabryel B, Herman ZS (2005) Chlorpromazine and loxapine reduce interleukin-1beta and interleukin-2 release by rat mixed glial and microglial cell cultures. Eur Neuropsychopharmacol 5:23–30

    Article  CAS  Google Scholar 

  • Li L, Mamputu JC, Wiernsperger N, Renier G (2005) Signaling pathways involved in human vascular smooth muscle cell proliferation and matrix metalloproteinase-2 expression induced by leptin: inhibitory effect of metformin. Diabetes 54:2227–2234

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A 91:12243–12247

    Article  CAS  PubMed  Google Scholar 

  • Ma TC, Buescher JL, Oatis B, Funk JA, Nash AJ, Carrier RL, Hoyt KR (2007) Metformin therapy in a transgenic mouse model of Huntington's disease. Neurosci Lett 411:98–103

    Article  CAS  PubMed  Google Scholar 

  • Majumdar A, Cruz D, Asamoah N, Buxbaum A, Sohar I, Lobel P, Maxfield FR (2007) Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell 18:1490–1496

    Article  CAS  PubMed  Google Scholar 

  • Mamputu JC, Wiernsperger NF, Renier G (2003) Antiatherogenic properties of metformin: the experimental evidence. Diabetes Metab 29:6S71–6S76

    Article  CAS  PubMed  Google Scholar 

  • Medeiros R, Prediger RD, Passos GF, Pandolfo P, Duarte FS, Franco JL, Dafre AL, Di Giunta G, Figueiredo CP, Takahashi RN, Campos MM, Calixto JB (2007) Connecting TNF alpha signaling pathways to iNOS expression in a mouse model of Alzheimer's disease: relevance for the behavioral and synaptic deficits induced by amyloid beta protein. J Neurosci 27:5394–5404

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Method 65:55–63

    Article  CAS  Google Scholar 

  • Nath N, Khan M, Paintlia MK, Hoda MN, Giri S (2009) Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol 182:8005–8014

    Article  CAS  PubMed  Google Scholar 

  • Ropelle ER, Pauli JR, Zecchin KG, Ueno M, de Souza CT, Morari J, Faria MC, Velloso LA, Saad MJ, Carvalheira JB (2007) A central role for neuronal adenosine 5′-monophosphate-activated protein kinase in cancer-induced anorexia. Endocrinology 148:5220–5229

    Article  CAS  PubMed  Google Scholar 

  • Saeedi R, Parsons HL, Wambolt RB, Paulson K, Sharma V, Dyck JR, Brownsey RW, Allard MF (2008) Metabolic actions of metformin in the heart can occur by AMPK- independent mechanisms. Am J Physiol Heart Circ Physiol 294:2497–2506

    Article  CAS  Google Scholar 

  • Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D (2007) Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 403:139–148

    Article  CAS  PubMed  Google Scholar 

  • Satoh J, Kim SU (1995) Ganglioside markers GD3, GD2, and A2B5 in fetal human neurons and glial cells in culture. Dev Neurosci 17:137–148

    Article  CAS  PubMed  Google Scholar 

  • Stott DI (1989) Immunoblotting and dot blotting. J Immunol Methods 119:153–187

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Lee TS, Zhu M, Gu C, Wang Y, Zhu Y, Shyy JY (2006) Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation 114:2655–2662

    Article  CAS  PubMed  Google Scholar 

  • Tamás P, Hawley SA, Clarke RG, Mustard KJ, Green K, Hardie DG, Cantrell DA (2006) Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 203:1665–1670

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  PubMed  Google Scholar 

  • Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100:328–341

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA (2009) The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells. Cell Cycle 8:88–96

    CAS  PubMed  Google Scholar 

  • Wilcock C, Bailey CJ (1994) Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 24:49–57

    Article  CAS  PubMed  Google Scholar 

  • Wilcock C, Wyre ND, Bailey CJ (1991) Subcellular distribution of metformin in rat liver. J Pharm Pharmacol 43:442–444

    CAS  PubMed  Google Scholar 

  • Zen K, Biwersi J, Periasamy N, Verkman AS (1992) Second messengers regulate endosomal acidification in Swiss 3 T3 fibroblasts. J Cell Biol 119:99–110

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    CAS  PubMed  Google Scholar 

  • Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG 4th, Schlattner U, Neumann D, Brownlee M, Freeman MB, Goldman MH (2004) Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem 279:43940–43951

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mrs. Jaroslawa Sprada, Mrs. Halina Klimas, and Mrs. Anna Bielecka for their excellent technical support. This work was supported by a research grant KNW-2-092/09 from Medical University of Silesia, Katowice, Poland. None of the authors has any conflict of interest. The study was approved by the Ethical Committee of the Medical University of Silesia. The experiments comply with the current law of Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Łabuzek.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00210-017-1350-y.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplement 1

PDF 1.44 MB

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łabuzek, K., Liber, S., Gabryel, B. et al. Metformin increases phagocytosis and acidifies lysosomal/endosomal compartments in AMPK-dependent manner in rat primary microglia. Naunyn-Schmied Arch Pharmacol 381, 171–186 (2010). https://doi.org/10.1007/s00210-009-0477-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-009-0477-x

Keywords

Navigation