Skip to main content

Advertisement

Log in

Effects of varenicline and mecamylamine on the acquisition, expression, and reinstatement of nicotine-conditioned place preference by drug priming in rats

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Nicotine addiction is a chronic disorder characterized by a relatively high rate of relapse even after long period of abstinence. In the present study, we used the conditioned place preference (CPP) paradigm to investigate the establishment, extinction, reinstatement, and cross-reinstatement of nicotine-induced place conditioning in rats. First, we revealed that nicotine produced a place preference to the initially less-preferred compartment paired with its injections during conditioning (0.175 mg/kg, base, intraperitoneally (i.p.)). Once established, nicotine CPP was extinguished by repeated testing. Following this extinction phase, nicotine-experienced rats were challenged with nicotine (0.175 mg/kg, i.p.) or morphine (10 mg/kg, i.p.). These priming injections of both drugs induced a marked preference for the compartment previously paired with nicotine. Furthermore, given the important role of alpha4beta2 (a4b2) nicotinic receptor subtype in the acquisition and maintenance of nicotine dependence, we evaluated and compared the efficacy of varenicline, a partial a4b2 nicotinic receptor agonist (0.5, 1, and 2 mg/kg, subcutaneously (s.c.)), and mecamylamine (0.5, 1, and 2 mg/kg, s.c.), a non-selective nicotinic receptor antagonist, in blocking nicotine-induced CPP as well as reinstatement of nicotine CPP provoked by nicotine and morphine. It was shown that both nicotinic receptor ligands attenuated the acquisition and expression of nicotine CPP as well as the expression of reinstatement of nicotine CPP provoked by both drugs. Our results indicate similar cholinergic mechanisms, probably through the a4b2 receptors involved in the rewarding effects of nicotine and morphine in rats and may suggest that nicotinic receptors could be a potential target for developing pharmacotherapeutic strategies to treat and prevent nicotine and/or opioid addiction and relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida LE, Pereira EF, Alkondon M, Fawcett WP, Randall WR, Albuquerque EX (2000) The opioid antagonist naltrexone inhibits activity and alters expression of alpha7 and alpha4beta2 nicotinic receptors in hippocampal neurons: implications for smoking cessation programs. Neuropharmacology 39:2740–2755

    Article  CAS  PubMed  Google Scholar 

  • Balfour DJ (2002) Neuroplasticity within the mesoaccumbens dopamine system and its role in tobacco dependence. Curr Drug Targets CNS Neurol Disord 1:413–421

    Article  CAS  PubMed  Google Scholar 

  • Berrendero F, Kieffer BL, Maldonado R (2002) Attenuation of nicotine-induced antinociception, rewarding effects, and dependence in μ-opioid receptor knock-out mice. J Neurosci 22:10935–10940

    CAS  PubMed  Google Scholar 

  • Biala G (2003) Calcium channel antagonists suppress nicotine-induced place preference and locomotor sensitization in rodents. Pol J Pharmacol 55:327–335

    CAS  PubMed  Google Scholar 

  • Biala G, Budzynska B (2006) Reinstatement of nicotine-conditioned place preference by drug priming: effects of calcium channel antagonists. Eur J Pharmacol 537:85–93

    Article  CAS  PubMed  Google Scholar 

  • Biala G, Weglinska B (2006) On the mechanism of cross-tolerance between morphine- and nicotine-induced antinociception: involvement of calcium channels. Prog Neuropsychopharmacol Biol Psychiatry 30:15–21

    Article  CAS  PubMed  Google Scholar 

  • Biala G, Budzynska B (2008) Calcium-dependent mechanisms of the reinstatement of nicotine-conditioned place preference by drug priming in rats. Pharmacol Biochem Behav 89:116–125

    Article  CAS  PubMed  Google Scholar 

  • Biala G, Budzynska B, Kruk M (2005) Naloxone precipitates nicotine abstinence syndrome and attenuates nicotine-induced antinociception in mice. Pharmacol Rep 57:755–760

    CAS  PubMed  Google Scholar 

  • Calcagnetti DJ, Schechter MD (1994) Nicotine place preference using the biased method of conditioning. Prog Neuropsychopharmacol Biol Psychiatry 18:925–933

    Article  CAS  PubMed  Google Scholar 

  • Carr GD, Fibiger HC, Phillips AG (1989) Conditioned place preference as a measure of drug reward. In: Liebman JM, Cooper SJ (eds) The neuropharmacological basis of reward. Oxford University Press, Oxford, pp 264–319

    Google Scholar 

  • Chaudhri N, Caggiula AR, Donny EC, Booth S, Gharib M, Craven L et al (2006) Operant responding for conditioned and unconditioned reinforcers in rats is differentially enhanced by the primary reinforcing and reinforcement-enhancing effects of nicotine. Psychopharmacology 189:27–36

    Article  CAS  PubMed  Google Scholar 

  • Coe JW, Brooks PR, Vetelino MG, Wirtz MC, Arnold EP, Huang J et al (2005) Varenicline: an α4β2 nicotinic receptor partial agonist for smoking cessation. J Med Chem 48:3474–3477

    Article  CAS  PubMed  Google Scholar 

  • Cohen C, Bergis OE, Galli F, Lochead AW, Jegham S, Biton B et al (2003) SSR591813, a novel and selective partial a4b2 nicotinic receptor with potential as an aid for smoking cessation. J Pharmacol Exp Ther 306:407–420

    Article  CAS  PubMed  Google Scholar 

  • Corrigall WA, Franklin KB, Coen KM, Clarke PB (1992) The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 107:285–289

    Article  CAS  PubMed  Google Scholar 

  • Dani JA, Ji D, Zhou FM (2001) Synaptic plasticity and nicotine addiction. Neuron 31:349–352

    Article  CAS  PubMed  Google Scholar 

  • Donny EC, Caggiula AR, Mielke MM, Booth S, Gharib MA, Hoffman A et al (1999) Nicotine self-administration in rats on a progressive ratio schedule of reinforcement. Psychopharmacology (Berl) 147:135–142

    Article  CAS  Google Scholar 

  • Ericson M, Löf E, Stomberg R, Söderpalm B (2009) The smoking cessation medication varenicline attenuates alcohol and nicotine interactions in the rats mesolimbic dopamine system. JPET 329:225–230

    Article  CAS  Google Scholar 

  • Fiserova M, Consolo S, Krsiak M (1999) Chronic morphine induces long-lasting changes in acetylcholine release in rat nucleus accumbens core and shell: an in vivo microdialysis study. Psychopharmacology 142:85–94

    Article  CAS  PubMed  Google Scholar 

  • Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396

    Article  CAS  PubMed  Google Scholar 

  • Gronier B, Perry KW, Rasmussen K (2000) Activation of the mesocorticolimbic dopaminergic system by stimulation of muscarinic cholinergic receptors in the ventral tegmental area. Psychopharmacology 147:347–355

    Article  CAS  PubMed  Google Scholar 

  • Hughes JR (2007) Effects of abstinence from tobacco: valid symptoms and time course. Nicotine Tob Res 9:315–327

    Article  PubMed  Google Scholar 

  • Kelley AE (2002) Nicotinic receptors: addiction’s smoking gun? Nat Med 8:447–449

    Article  CAS  PubMed  Google Scholar 

  • Kenford SL, Fiore MC, Jorenby DE, Smith SS, Wetter D, Baker TB (1994) Predicting smoking cessation. Who will quit with and without the nicotine patch. JAMA 271:589–594

    Article  CAS  PubMed  Google Scholar 

  • Mansvelder HD, Keath JR, McGehee DS (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33:905–919

    Article  CAS  PubMed  Google Scholar 

  • Marks MJ, Pauly JR, Gross SD, Deneris ES, Hermans-Borgmeyer I, Heinemann SF, Collins AC (1992) Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J Neurosci 12:2765–2784

    CAS  PubMed  Google Scholar 

  • Marubio LM, Gardier AM, Durier S, David D, Klink R, Arroyo-Jimenez MM et al (2003) Effects of nicotine in the dopaminergic system of mice lacking the alpha 4 subunit of neuronal nicotinic acetylcholine receptors. Eur J Neurosci 17:1327–1337

    Article  Google Scholar 

  • Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux J-P et al (2005) Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 436:103–107

    Article  CAS  PubMed  Google Scholar 

  • Miller AD, Forster GL, Yeomans JS, Blaha CD (2005) Midbrain muscarinic receptors modulate morphine-induced accumbal and striatal dopamine efflux in the rat. Neuroscience 136:531–538

    Article  CAS  PubMed  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Merlo-Pich E et al (1998) Acetylcholine receptors containing the beta-2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    Article  CAS  PubMed  Google Scholar 

  • Potts LA, Garwood CL (2007) Varenicline: the newest agent for smoking cessation. Am J Health-Syst Pharm 64:1381–1384

    Article  CAS  PubMed  Google Scholar 

  • Rahman S, Neugebauer NM, Zhang Z, Crooks PA, Dwoskin LP, Bardo MT (2007) The effects of a novel nicotinic receptor antagonist N, Ndodecane-1, 12-diyl-bis-3-picolinium dibromide (bPiDDB) on acute and repeated nicotine-induced increases in extracellular dopamine in rat nucleus accumbens. Neuropharmacology 52:755–763

    Article  CAS  PubMed  Google Scholar 

  • Reid MS, Fox L, Ho LB, Berger SP (2000) Nicotine stimulation of extracellular glutamate levels in the nucleus accumbens: neuropharmacological characterization. Synapse 35:129–136

    Article  CAS  PubMed  Google Scholar 

  • Rezayof A, Nazari-Serenjeh F, Zarrindast MR, Sepehri H, Delphi L (2007) Morphine-induced place preference: involvement of cholinergic receptors of the ventral tegmental area. Eur J Pharmacol 562:92–102

    Article  CAS  PubMed  Google Scholar 

  • Rollema H, Coe JW, Chambers LK, Hurst RS, Stahl SM, Williams KE (2007a) Rationale, pharmacology and clinical efficacy of partial agonists of α4β2 nACh receptors for smoking cessation. Trends Pharmacol Sci 28:316–325

    Article  CAS  PubMed  Google Scholar 

  • Rollema H, Chambers LK, Coe JW, Glowa J, Hurst RS, Lebel LA et al (2007b) Pharmacological profile of the alpha4beta2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology 52:985–994

    Article  CAS  PubMed  Google Scholar 

  • Stapleton JA, Watson L, Spirling LI, Smith R, Milbrandt A, Ratcliffe M, Sutherland G (2008) Varenicline in the routine treatment of tobacco dependence: a pre-post comparison with nicotine replacement therapy and an evaluation in those with mental illness. Addiction 103:146–154

    Article  PubMed  Google Scholar 

  • Taguchi K, Hagiwara Y, Suzuki Y, Kubo T (1993) Effects of morphine on release of acetylcholine in the rat striatum: an in vivo microdialysis study. Naunyn Schmiedebergs Arch Pharmacol 347:9–13

    Article  CAS  PubMed  Google Scholar 

  • Tome AR, Izaguirre V, Rosario LM, Cena V, Gonzales-Garcia G (2001) Naloxone inhibits nicotine-induced receptor current and catecholamine secretion in bovine chromaffin cells. Brain Res 903:62–65

    Article  CAS  PubMed  Google Scholar 

  • Tonstad S, Tønnesen P, Hajek P, Williams KE, Billing CB, Reeves KR (2006) Varenicline Phase 3 Study Group. Effect of establishment therapy with varenicline on smoking cessation: a randomized controlled trial. JAMA 296:64–71

    Article  CAS  PubMed  Google Scholar 

  • Tzschentke TM (1998) Measuring reward with the conditioned place preference paradigm: a comparative review of drug effects, recent progress and new issues. Prog Neurobiol 56:613–672

    Article  CAS  PubMed  Google Scholar 

  • Watkins SS, Epping-Jordan MP, Koob GF, Markou A (1999) Blockade of nicotine self-administration with nicotinic antagonists in rats. Pharmacol Biochem Behav 62:743–751

    Article  CAS  PubMed  Google Scholar 

  • West R, Ussher M, Evans M, Rashid M (2006) Assessing DSM-IV nicotine withdrawal symptoms: a comparison and evaluation of five different scales. Psychopharmacology 184:619–627

    Article  CAS  PubMed  Google Scholar 

  • Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92–98

    Article  CAS  PubMed  Google Scholar 

  • Wonnacott S, Sidhpura N, Balfour DJ (1997) Nicotine: from molecular mechanisms to behaviour. Curr Opin Pharmacol 5:53–59

    Article  Google Scholar 

  • Wooltorton JR, Pidoplichko VI, Broide RS, Dani JA (2003) Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. J Neurosci 23:3176–3185

    CAS  PubMed  Google Scholar 

  • Yeomans J, Baptista M (1997) Both nicotinic and muscarinic receptors in ventral tegmental area contribute to brain-stimulation reward. Pharmacol Biochem Behav 57:915–921

    Article  CAS  PubMed  Google Scholar 

  • Yeomans J, Mathur A, Tampakeras M (1993) Rewarding brain stimulation: role of tegmental cholinergic neurons that activate dopamine neurons. Behav Neurosci 107:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Zarrindast MR, Khoshayand MR, Shafaghi B (1999) The development of cross-tolerance between morphine and nicotine in mice. Eur Neuropsychopharmacol 9:227–233

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Pfizer Inc. (Groton, USA) for the generous gift of varenicline. This work was supported by the Statutory Funds of the Medical University of Lublin (DS 23/09) and received no special grant from any funding agency in the public, commercial, or not-for-profit sectors. All authors declare that they have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grazyna Biala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biala, G., Staniak, N. & Budzynska, B. Effects of varenicline and mecamylamine on the acquisition, expression, and reinstatement of nicotine-conditioned place preference by drug priming in rats. Naunyn-Schmied Arch Pharmacol 381, 361–370 (2010). https://doi.org/10.1007/s00210-010-0498-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-010-0498-5

Keywords

Navigation