Skip to main content

Advertisement

Log in

Effects of bupropion on the forced swim test and release of dopamine in the nucleus accumbens in ACTH-treated rats

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The dopamine reuptake inhibitor bupropion has clinically been proven to improve depression and treatment-resistant depression. We examined its influence on the duration of immobility during the forced swim test in adrenocorticotropic hormone (ACTH)-treated rats and further analyzed the possible role of dopamine receptors in this effect. Additionally, the mechanism by which bupropion acts in this model was explored specifically in relation to the site of action through the use of microinjections into the medial prefrontal cortex and nucleus accumbens. Bupropion significantly decreased the duration of immobility in normal and ACTH-treated rats. This effect was blocked by D2 and D3 receptor antagonists in normal rats. Furthermore, infusions of bupropion into the nucleus accumbens, but not medial prefrontal cortex, decreased the immobility of normal and ACTH-treated rats during the forced swim test. Bupropion treatment plus repeated ACTH treatment significantly increased the extracellular dopamine concentration. These findings suggest the antidepressant-like effect of bupropion to be related to levels of dopamine in the rat nucleus accumbens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Carroll BJ, Curtis GC, Mendels J (1976) Neuroendocrine regulation in depression. Arch Gen Psychiatry 33:1039–1044

    CAS  PubMed  Google Scholar 

  • Cassano P, Lattanzi L, Fava M, Navari S, Battistini G, Abelli M, Cassano GB (2005) Ropinirole in treatment-resistant depression: a 16-week pilot study. Can J Psychiatry 50:357–360

    PubMed  Google Scholar 

  • Cervo L, Samanin R (1987) Evidence that dopamine mechanisms in the nucleus accumbens are selectively involved in the effect of desipramine in the forced swimming test. Neuropharmacology 26:1469–1472

    Article  CAS  PubMed  Google Scholar 

  • Cervo L, Samanin R (1988) Repeated treatment with imipramine and amitriptyline reduced the immobility of rats in the swimming test by enhancing dopamine mechanisms in the nucleus accumbens. J Pharm Pharmacol 40:155–156

    CAS  PubMed  Google Scholar 

  • Cooper BR, Hester TJ, Maxwell RA (1980) Behavioral and biochemical effects of antidepressant bupropion (Wellbutrin): evidence for selective blockade of desipramine uptake in vivo. J Pharmacol Exp Ther 215:127–134

    CAS  PubMed  Google Scholar 

  • Fava M, Papakostas GI, Petersen T, Mahal Y, Quitkin F, Stewart J, McGrath P (2003) Switching to bupropion in fluoxetine-resistant major depressive disorder. Ann Clin Psychiatry 15:17–22

    PubMed  Google Scholar 

  • Inoue T, Tsuchiya K, Miura J, Sakakibara S, Denda K, Kasahara T, Koyama T (1996) Bromocriptine treatment of tricyclic and heterocyclic antidepressant-resistant depression. Biol Psychiatry 40:151–153

    Article  CAS  PubMed  Google Scholar 

  • Izumi T, Inoue T, Kitagawa N, Nishi N, Shimanaka S, Takahashi Y, Kusumi I, Odagaki Y, Denda K, Ohmori T, Koyama T (2000) Open pergolide treatment of tricyclic and heterocyclic antidepressant-resistant depression. J Affect Disord 61:127–132

    Article  CAS  PubMed  Google Scholar 

  • Jordan S, Kramer GL, Zukas PK, Moeller M, Petty F (1994) In vivo biogenic amine efflux in medial prefrontal cortex with imipramine, fluoxetine, and fluvoxamine. Synapse 18:294–297

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa K, Kitamura Y, Miyazaki T, Miyaoka J, Kawasaki H, Asanuma M, Sendo T, Gomita Y (2009) Effects of pramipexole on the duration of immobility during the forced swim test in normal and ACTH-treated rats. Naunyn Schmiedebergs Arch Pharmacol 380:59–66

    Article  CAS  PubMed  Google Scholar 

  • Kitamura Y, Araki H, Gomita Y (2002) Influence of ACTH on the effects of imipramine, desipramine and lithium on duration of immobility of rats in the forced swim test. Pharmacol Biochem Behav 71:63–69

    Article  CAS  PubMed  Google Scholar 

  • Kitamura Y, Fujitani Y, Kitagawa K, Miyazaki T, Sagara H, Kawasaki H, Shibata K, Sendo T, Gomita Y (2008) Effects of imipramine and bupropion on the duration of immobility of ACTH-treated rats in the forced swim test: involvement of the expression of 5-HT2A receptor mRNA. Biol Pharm Bull 31:246–249

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni SK, Bhutani MK, Bishnoi M (2008) Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology 201:435–442

    Article  CAS  PubMed  Google Scholar 

  • Levant B, Nichole R, Vansell BA (1997) In vivo occupancy of D2 dopamine receptors by nafadotride. Neuropsychopharmacol 17:67–71

    Article  CAS  Google Scholar 

  • Li B, Suemaru K, Kitamura Y, Cui R, Gomita Y, Araki H (2007) Strategy to develop a new drug for treatment-resistant depression -Role of electroconvulsive stimuli and BDNF-. YAKUGAKU ZASSI 127:735–742

    Article  CAS  Google Scholar 

  • Maj J, Dziedzicka-Wasylewska M, Rogoz R, Rogoz Z, Skuza G (1996) Antidepressant drugs given repeatedly change the binding of the dopamine D2 receptor agonist [3H]N-0437, to dopamine D2 receptors in the rat brain. Eur J Pharmacol 304:49–54

    Article  CAS  PubMed  Google Scholar 

  • Murphy BEP, Dhar V, Ghadirian AM, Chouinard G, Keller R (1991) Response to steroid suppression in major depression on resistant to antidepressant therapy. J Clin Psychopharmacol 11:121–126

    CAS  PubMed  Google Scholar 

  • Pandey DK, Rajkumar R, Mahesh R, Radha R (2008) Depressant-like effects of parthenolide in a rodent behavioural antidepressant test battery. J Pharm Pharmacol 60:1643–1650

    Article  CAS  PubMed  Google Scholar 

  • Piacentini MF, Clinckers R, Meeusen R, Sarre S, Ebinger G, Michotte Y (2003) Effects of bupropion on hippocampal neurotransmitters and on peripheral hormonal concentrations in the rat. J Appl Physiol 95:652–656

    CAS  PubMed  Google Scholar 

  • Rogoz R, Dzicka-Wasylewska MD (1999) Effect of antidepressant drugs on the dopamine D2/D3 receptors in the rat brain differentiated by agonist and antagonist binding - an autoradiographic analysis. Naunyn-Schmiedeberg’s Arch pharmacol 359:178–186

    Article  CAS  Google Scholar 

  • Rogoz Z, Skuza G, Klodzinska A (2004) Anxiolytic- and antidepressant-like effects of 7-OH-DPAT, preferential dopamine D3 receptor agonist in rats. Pol J Pharmacol 56:519–526

    CAS  PubMed  Google Scholar 

  • Sanchez C, Hyttel J (1999) Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell Mol Neurobiol 19:467–489

    Article  CAS  PubMed  Google Scholar 

  • Serra G, Collu M, D’Aquila PS, De Montis GM, Gessa GL (1990) Possible role of dopamine D1 receptor in the behavioural supersensitivity to dopamine agonists induced by chronic treatment with antidepressants. Brain Res 527:234–243

    Article  CAS  PubMed  Google Scholar 

  • Simon SX, Perry KW, Wong DT (2002) Influence of fluoxetine on the ability of bupropion to modulate extracellular dopamine and norepinephrine concentrations in three mesocorticolimbic areas of rats. Neuropharmacology 42:181–190

    Article  Google Scholar 

  • Sonino N, Boscaro M, Ambroso G, Merola G, Mantero F (1986) Prolonged treatment of Cushing’s disease with metyrapone and aminoglutethimide. IRCS J Med Sci 14:485–486

    Google Scholar 

  • Tanda G, Carboni E, Frau R, Di Chiara G (1994) Increase of extracellular dopamine in the prefrontal cortex: a trait of drugs with antidepressant potential? Psychopharmacology 93:193–200

    Google Scholar 

  • Willner P (1997) The mesolimbic dopamine system as a target for rapid antidepressant action. Int Clin Psychopharmacol 12(Suppl 3):S7–S14

    Article  PubMed  Google Scholar 

  • Yamada J, Sugimoto Y, Yamada S (2004) Involvement of dopamine receptors in the anti-immobility effects of dopamine re-uptake inhibitors in the forced swimming test. Eur J Pharmacol 504:207–211

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 21590593).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Kitamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitamura, Y., Yagi, T., Kitagawa, K. et al. Effects of bupropion on the forced swim test and release of dopamine in the nucleus accumbens in ACTH-treated rats. Naunyn-Schmied Arch Pharmacol 382, 151–158 (2010). https://doi.org/10.1007/s00210-010-0521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-010-0521-x

Keywords

Navigation