Skip to main content
Log in

A posteriori error analysis for higher order dissipative methods for evolution problems

  • Original article
  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We prove a posteriori error estimates for time discretizations by the discontinuous Galerkin method dG(q) and the corresponding implicit Runge- Kutta-Radau method IRK-R(q) of arbitrary order q≥0 for both linear and nonlinear evolution problems of the form \(u^{\prime} + \mathfrak{F}(u) = f\), with γ2-angle bounded operator \(\mathfrak{F}\). The key ingredient is a novel higher order reconstruction \(\widehat{U}\) of the discrete solution U, which restores continuity and leads to the differential equation \(\widehat{U}^{\prime}+\Pi\mathfrak{F}(U)=F\) for a suitable interpolation operator Π and piecewise polynomial approximation F of f. We discuss applications to linear PDE, such as the convection-diffusion equation (γ ≥ 1/2) and the wave equation (formally γ =  ∞), and nonlinear PDE corresponding to subgradient operators (γ =  1), such as the p-Laplacian, as well as Lipschitz operators (γ ≥ 1/2). We also derive conditional a posteriori error estimates for the time-dependent minimal surface problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis G., Makridakis Ch.G., Nochetto R.H. (2006). A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math. Comp. 75:511–531

    Article  MATH  MathSciNet  Google Scholar 

  2. Baker G.A., Bramble J.H. (1979). Semidiscrete and single step fully discrete approximations for second order hyperbolic equations. RAIRO Anal. Numér. 13(2):75–100

    MATH  MathSciNet  Google Scholar 

  3. Bangerth W., Rannacher R. (2003). Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel

    MATH  Google Scholar 

  4. Bergam A., Bernardi C., Mghazli Z. (2005). A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74(251):1117–1138 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brézis H. (1972). Problèmes unilatéraux. J. Math. Pures Appl. 51:1–168

    MATH  MathSciNet  Google Scholar 

  6. Brézis H., Browder F.E. (1975). Nonlinear integral equations and systems of Hammerstein type. Adv. Math. 18(2):115–147

    Article  MATH  Google Scholar 

  7. Caffarelli L.A. (1997). The regularity of monotone maps of finite compression. Comm. Pure Appl. Math. 50(6):563–591

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen Z., Feng J. (2004). An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math. Comp. 73(247):1167–1193 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dekker K., Verwer J.G. (1984). Stability of Runge-Kutta methods for stiff nonlinear differential equations. North-Holland Publishing Co., Amsterdam

    MATH  Google Scholar 

  10. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numer. pp 105–158 (1995)

  11. Eriksson K., Johnson C. (1991). Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal., 28(1):43–77

    Article  MATH  MathSciNet  Google Scholar 

  12. Eriksson K., Johnson C. (1995). Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32(6):1729–1749

    Article  MATH  MathSciNet  Google Scholar 

  13. Eriksson K. Johnson C., Larsson S. (1998). Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35(4):1315–1325 (electronic)

    Article  MathSciNet  Google Scholar 

  14. Eriksson K., Johnson C., Logg A. (2004). Adaptive computational methods for parabolic problems. In: Stein E., de Borst R., Houghes T.J.R. (eds) Encyclopedia of Computational Mechanics. Wiley, New York, pp. 1–44

    Google Scholar 

  15. Eriksson K., Johnson C., Thomée V. (1985). Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO Modél. Math. Anal. Numér. 19(4):611–643

    MATH  Google Scholar 

  16. Estep D.J. (1995). A posteriori error bounds and global error control for approximation of ordinary differential equations. SIAM J. Numer. Anal. 32(1):1–48

    Article  MATH  MathSciNet  Google Scholar 

  17. Estep, D.J., Larson, M.G., Williams, R.D.: Estimating the error of numerical solutions of systems of reaction-diffusion equations. Mem. Amer. Math. Soc. 146(696) viii+109 (2000)

  18. Estep D.J., Stuart A.M. (2002). The dynamical behavior of the discontinuous Galerkin method and related difference schemes. Math. Comp. 71(239):1075–1103 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fierro F., Veeser A. (2003). On the a posteriori error analysis for equations of prescribed mean curvature. Math. Comp. 72:1611–1634

    Article  MATH  MathSciNet  Google Scholar 

  20. Hairer E., Wanner G. (1991). Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  21. Houston, P., Senior, B., Süli, E.: hp-discontinuous Galerkin finite element methods for hyperbolic problems: error analysis and adaptivity. Internat. J. Numer. Methods Fluids, 40(1–2) 153–169 (2002) ICFD Conference on Numerical Methods for Fluid Dynamics (Oxford, 2001)

  22. Houston P., Süli E. (2001). hp-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems. SIAM J. Sci. Comput. 23(4):1226–1252 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jamet P. (1978). Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15(5):912–928

    Article  MATH  MathSciNet  Google Scholar 

  24. Johnson C. (1988). Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 25(4):908–926

    Article  MATH  MathSciNet  Google Scholar 

  25. Johnson C. (1993). Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 107(1–2):117–129

    Article  MATH  Google Scholar 

  26. Johnson C., Nie Y.Y., Thomée V. (1990). An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27(2):277–291

    Article  MATH  MathSciNet  Google Scholar 

  27. Karakashian O., Makridakis Ch. (1998). A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comp. 67(222):479–499

    Article  MATH  MathSciNet  Google Scholar 

  28. Lakkis, O., Nochetto, R.H.: A posteriori error analysis for the mean curvature flow of graphs. SIAM J. Numer. Anal. (2004)

  29. Lasaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation, in mathematical aspects of finite elements in partial differential equations. In: Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Academic Press, pp. 89–123. Publication No. 33 (1974)

  30. Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod (1969)

  31. Lippold G. (1990). Error estimates for the implicit Euler approximation of an evolution inequality. Nonlinear Anal. 15(11):1077–1089

    Article  MATH  MathSciNet  Google Scholar 

  32. Lippold G. (1991). Error estimates and step-size control for the approximate solution of a first order evolution equation. RAIRO Modél. Math. Anal. Numér. 25(1):111–128

    MATH  MathSciNet  Google Scholar 

  33. Nochetto, R.H., Savaré, G.: Nonlinear evolution equations governed by accretive operators in banach spaces: error control and applications. Math. Models Methods Appl. Sci. (to appear)

  34. Nochetto R.H., Savaré G., Verdi C. (1998). Error control for nonlinear evolution equations. C.R. Acad. Sci. Paris, Ser. I 326:1437–1442

    MATH  Google Scholar 

  35. Nochetto R.H., Savaré G., Verdi C. (2000). A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53(5):525–589

    Article  MATH  MathSciNet  Google Scholar 

  36. Nochetto R.H., Schmidt A., Verdi C. (2000). A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp. 69(229):1–24

    Article  MATH  MathSciNet  Google Scholar 

  37. Picasso M. (1998). Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Eng. 167(3–4):223–237

    Article  MATH  MathSciNet  Google Scholar 

  38. Rulla J. (1996). Error analysis for implicit approximations to solutions to cauchy problems. SIAM J. Numer. Anal. 33(1):68–87

    Article  MATH  MathSciNet  Google Scholar 

  39. Skeel R.D. (1986). Thirteen ways to estimate global error. Numer. Math. 48(1):1–20

    Article  MATH  MathSciNet  Google Scholar 

  40. Stuart A.M., Humphries A.R. (1995). The essential stability of local error control for dynamical systems. SIAM J. Numer. Anal. 32(6):1940–1971

    Article  MATH  MathSciNet  Google Scholar 

  41. Süli, E., Houston, P.: Finite element methods for hyperbolic problems: a posteriori error analysis and adaptivity. In: The state of the art in numerical analysis (York, 1996), vol. 63 of Inst. Math. Appl. Conf. Ser. New Ser., pp. 441–471. Oxford University Press, New York (1997)

  42. Thomée V. (1997). Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  43. Verfürth R. (1998). A posteriori error estimates for nonlinear problems. L r(0,T; L ρ(Ω))-error estimates for finite element discretizations of parabolic equations. Math. Comp. 67(224):1335–1360

    Article  MATH  MathSciNet  Google Scholar 

  44. Verfürth R. (2003). A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40:195–212

    Article  MATH  MathSciNet  Google Scholar 

  45. Zadunaisky, P.E.: On the estimation of errors propagated in the numerical integration of ordinary differential equations. Numer. Math. 27(1) 21–39 (1976/1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalambos Makridakis.

Additional information

Partially supported by the European Union RTN-network HYKE, HPRN-CT-2002-00282, and the EU Marie Curie Development Host Site, HPMD-CT-2001-00121.

Partially supported by NSF Grants DMS-9971450 and DMS-0204670 and the General Research Board of the University of Maryland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makridakis, C., Nochetto, R.H. A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math. 104, 489–514 (2006). https://doi.org/10.1007/s00211-006-0013-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0013-6

Keywords

Mathematics Subject Classifications 2000

Navigation