Skip to main content
Log in

A V-cycle Multigrid for multilevel matrix algebras: proof of optimality

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We analyze the convergence rate of a multigrid method for multilevel linear systems whose coefficient matrices are generated by a real and nonnegative multivariate polynomial f and belong to multilevel matrix algebras like circulant, tau, Hartley, or are of Toeplitz type. In the case of matrix algebra linear systems, we prove that the convergence rate is independent of the system dimension even in presence of asymptotical ill-conditioning (this happens iff f takes the zero value). More precisely, if the d-level coefficient matrix has partial dimension n r at level r, with \({r=1, \ldots, d}\) , then the size of the system is \({{N(\varvec{n})=\prod_{r=1}^d n_r}}\) , \({\varvec{n}=(n_1, \ldots, n_d)}\) , and O(N(n)) operations are required by the considered V-cycle Multigrid in order to compute the solution within a fixed accuracy. Since the total arithmetic cost is asymptotically equivalent to the one of a matrix-vector product, the proposed method is optimal. Some numerical experiments concerning linear systems arising in 2D and 3D applications are considered and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aricò A., Donatelli M., Serra Capizzano S. (2004) V-cycle optimal convergence for certain (multilevel) structured linear system. SIAM J. Matrix Anal. Appl. 26(1): 186–214

    Article  MathSciNet  Google Scholar 

  2. Axelsson, G., Neytcheva, M.: The algebraic multilevel iteration methods—theory and applications. In: Bainov D. (ed.) Proceedings of the second int. Coll. on numerical analysis, VSP 1994, Bulgaria (1993)

  3. Beckermann, B., Serra Capizzano, S.: On the asymptotic spectrum of Finite Elements matrices. SIAM J. Numer. Anal. (to appear)

  4. Bini D., Capovani M. (1983) Spectral and computational properties of band simmetric Toeplitz matrices. Linear Algebra Appl. 52/53: 99–125

    MathSciNet  Google Scholar 

  5. Bini D., Favati P. (1993) On a matrix algebra related to the discrete Hartley transform. SIAM J. Matrix Anal. Appl. 14(2): 500–507

    Article  MathSciNet  Google Scholar 

  6. Bramble, J.H.: Multigrid methods. volume 294 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow, (1993)

  7. Bramble J.H., Pasciak J.E., Wang J., Xu J. (1991) Convergence estimates for product iterative methods with applications to domain decomposition. Math. Comput. 57(195): 1–21

    Article  MathSciNet  Google Scholar 

  8. Bramble J.H., Pasciak J.E., Wang J., Xu J. (1991) Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comput. 57(195): 23–45

    Article  MathSciNet  Google Scholar 

  9. Brandt A. (1994) Rigorous quantitative analysis of multigrid, I constant coefficients two-level cycle with L2-norm. SIAM J. Numer. Anal. 31(6): 1695–1730

    Article  MathSciNet  Google Scholar 

  10. Chan R.H., Chang Q., Sun H. (1998) Multigrid method for ill-conditioned symmetric Toeplitz systems. SIAM J. Sci. Comput. 19(2): 516–529

    Article  MathSciNet  Google Scholar 

  11. Chan R.H., Ng M. (1996) Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38: 427–482

    Article  MathSciNet  Google Scholar 

  12. Chan R.H., Serra Capizzano S., Tablino Possio C. (2005) Two-Grid methods for banded linear systems from DCT III algebra. Numer. Linear Algebra Appl. 12(2/3): 241–249

    Article  MathSciNet  Google Scholar 

  13. Chang Q., Jin X., Sun H. (2001) Convergence of the multigrid method for ill-conditioned block toeplitz systems. BIT 41(1): 179–190

    Article  MathSciNet  Google Scholar 

  14. Donatelli M. (2005) A Multigrid method for image restoration with Tikhonov regularization. Numer. Linear Algebra Appl. 12: 715–729

    Article  MathSciNet  Google Scholar 

  15. Donatelli M., Serra Capizzano S. (2006) On the regularizing power of multigrid-type algorithms. SIAM J. Sci. Comput. 26(6): 2053–2076

    Article  MathSciNet  Google Scholar 

  16. Fiorentino G., Serra Capizzano S. (1991) Multigrid methods for Toeplitz matrices. Calcolo 28: 283–305

    MathSciNet  Google Scholar 

  17. Fiorentino G., Serra Capizzano S. (1996) Multigrid methods for symmetric positive definite block Toeplitz matrices with nonnegative generating functions. SIAM J. Sci. Comp. 17(4): 1068–1081

    Article  MathSciNet  Google Scholar 

  18. Heinz E., Hanke M., Neubauer A. (1996) Regularization of Inverse Problems, Mathematics and its Applications. Kluwer, Dordrecht

    Google Scholar 

  19. Huckle T., Staudacher J. (2002) Multigrid preconditioning and Toeplitz matrices. Electr. Trans. Numer. Anal. 13: 81–105

    MathSciNet  Google Scholar 

  20. Kalouptsidis N., Carayannis G., Manolakis D. (1984) Fast algorithms for block Toeplitz matrices with Toeplitz entries. Signal Process. 6: 77–81

    Article  MathSciNet  Google Scholar 

  21. Ruge J.W., Stüben K. (1987) Algebraic multigrid. In: McCormick S. (eds) Frontiers in Applied Mathemathics: Multigrid Methods. SIAM, Philadelphia, pp. 73–130

    Google Scholar 

  22. Serra Capizzano S. (1994) Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems. BIT 34(4): 579–594

    Article  MathSciNet  Google Scholar 

  23. Serra Capizzano S. (2002) Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences. Numer. Math. 92(3): 433–465

    Article  MathSciNet  Google Scholar 

  24. Serra Capizzano S. (2004) A note on anti-reflective boundary conditions and fast deblurring models. SIAM J. Sci. Comput. 25(4): 1307–1325

    Article  MathSciNet  Google Scholar 

  25. Serra Capizzano S., Tablino Possio C. (2005) Multigrid methods for multilevel circulant matrices. SIAM J. Sci. Comp. 26(1): 55–85

    Article  MathSciNet  Google Scholar 

  26. Serra Capizzano S., Tyrtyshnikov E. (1999) Any circulant-like preconditioner for multilevel matrices is not superlinear. SIAM J. Matrix Anal. Appl. 21(2): 431–439

    Article  MathSciNet  Google Scholar 

  27. Trottenberg U., Oosterlee C.W., Schüller A. (2001) Multigrid. Academic, New York

    MATH  Google Scholar 

  28. Tyrtyshnikov E. (1995) Circulant precondictioners with unbounded inverse. Linear Algebra Appl. 216: 1–23

    Article  MathSciNet  Google Scholar 

  29. Tyrtyshnikov E. (1996) A unifying approach to some old and new theorems on precondictioning and clustering. Linear Algebra Appl. 232: 1–43

    Article  MathSciNet  Google Scholar 

  30. Varga R.S. (1962) Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

  31. Xu J. (1992) Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4): 581–613

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Donatelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aricò, A., Donatelli, M. A V-cycle Multigrid for multilevel matrix algebras: proof of optimality. Numer. Math. 105, 511–547 (2007). https://doi.org/10.1007/s00211-006-0049-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0049-7

Mathematics Subject Classification (1991)

Navigation