Skip to main content

Advertisement

Log in

On the rate of convergence of the binomial tree scheme for American options

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

An American put option can be modelled as a variational inequality. With a penalization approximation to this variational inequality, the convergence rate \(O\big((\Delta x)^{2/3}\big)\) of the Binomial Tree Scheme is obtained in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amin K. and Khanna A. (1994). Convergence of American option values from disete to continuous-time financial models. Math. Financ. 4: 289–304

    Article  MATH  Google Scholar 

  2. Black F. and Scholes M. (1973). The price of options and corporate liabilities. J. Polit. Econ. 81: 637–654

    Article  Google Scholar 

  3. Cox J. and Rubinstein M. (1979). Option pricing: a simplified approach. J. Financ. Econ. 7: 229–263

    Article  Google Scholar 

  4. Friedman A. (1975). Parabolic variational inequalities in one space dimension and smoothness of the free boundary. J. Funct. Anal. 18: 151–176

    Article  MATH  Google Scholar 

  5. Friedman A. (1982). Variational Principles and Free Boundary Problems. Wiley, New York

    MATH  Google Scholar 

  6. Friedman A. (1964). Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  7. Jakobsen E.R. (2003). Error bounds for monotone approximation schemes for parabolic hamilton-jacobi-bellman equations. Math Models Methods Appl Sci 13: 613–644

    Article  MATH  Google Scholar 

  8. Jiang, L.: Mathematical Modeling and Methods for Option Pricing. World Scientific Publishing Co. Inc., River Edge, NJ (2005)

  9. Jiang L. and Dai M. (2004). Convergence of the explicit difference scheme and the binomial tree method for American options. J. Comp. Math. 22: 371–380

    MATH  Google Scholar 

  10. Jiang L. and Dai M. (2004). Convergence of binomial tree methods for European/American options path-depedent options. SIAM J Numer. Anal. 42: 1094–1109

    Article  MATH  Google Scholar 

  11. Krylov N.V. (1997). On the Rate of Convergence of Finite-Difference Approximations for Bellman’s Equations. St. Petersb. Math. J. 9: 639–650

    Google Scholar 

  12. Krylov N.V. (2000). On the rate of convergence of finite-difference approximations for Bellman’s equations with variable coefficients. Probab. Theory Relat. Fields 117: 1–16

    Article  MATH  Google Scholar 

  13. Lamberton D. and Rogers C. (2000). Optimal stopping and embedding. J. Appl. Probab. 4: 1143–1148

    Google Scholar 

  14. Lamberton D. (2002). Brownian optional stopping and random walks. Appl. Math. Optim. 45: 283–324

    Article  MATH  Google Scholar 

  15. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Nauka, Moscow (1967); English Trans. (1968)

  16. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific Publishing Co. Inc., River Edge, NJ (1996)

  17. Xu C., Qian X. and Jiang L. (2003). Numerical analysis on binomial tree methods for a jump-diffusion model. J. Com. Appl. Math. 156: 23–45

    MATH  Google Scholar 

  18. Wilmott W., Howison S. and Dewyne J. (1995). The Mathematics of Financial Derivatives. Cambridge University Press, London

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Hu, B., Jiang, L. et al. On the rate of convergence of the binomial tree scheme for American options. Numer. Math. 107, 333–352 (2007). https://doi.org/10.1007/s00211-007-0091-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0091-0

Mathematics Subject Classification (2000)

Navigation