Skip to main content
Log in

A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The solution of eigenvalue problems for partial differential operators by using boundary integral equation methods usually involves some Newton potentials which may be resolved by using a multiple reciprocity approach. Here we propose an alternative approach which is in some sense equivalent to the above. Instead of a linear eigenvalue problem for the partial differential operator we consider a nonlinear eigenvalue problem for an associated boundary integral operator. This nonlinear eigenvalue problem can be solved by using some appropriate iterative scheme, here we will consider a Newton scheme. We will discuss the convergence and the boundary element discretization of this algorithm, and give some numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt H.W.: Lineare Funktionalanalysis: Eine anwendungsorientierte Einführung. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Cai Z., Mandel J., McCormick S.: Multigrid methods for nearly singular linear equations and eigenvalue problems. SIAM J. Numer. Anal. 34(1), 178–200 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen J.T., Huang C.X., Chen K.H.: Determination of spurious eigenvalues and multiplicities of true eigenvalues using the real-part dual BEM. Comput. Mech. 24(1), 41–51 (1999)

    Article  MATH  Google Scholar 

  4. Decker D.W., Kelley C.T.: Newton’s method at singular points. I. SIAM J. Numer. Anal. 17(1), 66–70 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Decker D.W., Kelley C.T.: Convergence acceleration for Newton’s method at singular points. SIAM J. Numer. Anal. 19(1), 219–229 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner Studienbücher Mathematik. B. G. Teubner, Stuttgart (1996)

  7. Kamiya, N., Andoh, E.: Robust boundary element scheme for Helmholtz eigenvalue equation. In Boundary elements, XIII (Tulsa, OK, 1991), pp. 839–850. Comput. Mech., Southampton (1991)

  8. Kamiya N., Andoh E., Nogae K.: Eigenvalue analysis by the boundary element method: new developments. Eng. Anal. Bound. Elms. 12, 151–162 (1993)

    Article  Google Scholar 

  9. Karma O.: Approximation in eigenvalue problems for holomorphic Fredholm operator functions. II. (Convergence rate). Numer. Funct. Anal. Optim. 17(3–4), 389–408 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kirkup S.M., Amini S.: Solution of the Helmholtz eigenvalue problem via the boundary element method. Internat. J. Numer. Methods Eng. 36, 321–330 (1993)

    Article  MATH  Google Scholar 

  11. Kitahara M.: Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates, volume 10 of Studies in Applied Mechanics. Elsevier Scientific Publishing Co., Amsterdam (1985)

    Google Scholar 

  12. Knyazev, A.V.: Preconditioned eigensolvers—an oxymoron? Electron. Trans. Numer. Anal. 7, 104–123 (1998) (electronic). [Large scale eigenvalue problems (Argonne, IL, 1997)]

  13. Knyazev A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001) (electronic). [Copper Mountain Conference (2000)]

    Article  MATH  MathSciNet  Google Scholar 

  14. Kozlov V., Maźya V.: Differential equations with operator coefficients with applications to boundary value problems for partial differential equations. Springer Monographs in Mathematics. Springer, Berlin (1999)

    Google Scholar 

  15. McLean W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  16. Mehrmann, V., Voss, H.: Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM Mitt. Ges. Angew. Math. Mech. 27(2), 121–152 (2005), 2004

  17. Rjasanow S., Steinbach O.: The fast solution of boundary integral equations. Mathematical and Analytical Techniques with Applications to Engineering. Springer, New York (2007)

    Google Scholar 

  18. Ruhe A.: Algorithms for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 10, 674–689 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  19. Saad Y.: Numerical methods for large eigenvalue problems. Algorithms and Architectures for Advanced Scientific Computing. Manchester University Press, Manchester (1992)

    Google Scholar 

  20. Sauter, S.A., Schwab, C.: Randelementmethoden. Analyse, Numerik und Implementierung schneller Algorithmen. B.G. Teubner, Stuttgart, Leipzig, Wiesbaden (2004)

  21. Schoeberl, J.: Finite element package Netgen/NGSolve. www.hpfem.jku.at

  22. Schreiber, K.: Nonlinear Eigenvalue Problems: Newton-type Methods and Nonlinear Rayleigh Functionals. Dissertation, TU Berlin (2008)

  23. Steinbach O.: Numerical approximation methods for elliptic boundary value problems. Finite and Boundary Elements. Springer, New York (2008)

    MATH  Google Scholar 

  24. Wilkinson J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Steinbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinbach, O., Unger, G. A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator. Numer. Math. 113, 281–298 (2009). https://doi.org/10.1007/s00211-009-0239-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0239-1

Mathematics Subject Classification (2000)

Navigation