Skip to main content
Log in

A block Newton method for nonlinear eigenvalue problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. One of the most fundamental differences from the linear case is that distinct eigenvalues may have linearly dependent eigenvectors or even share the same eigenvector. This has been a severe hindrance in the development of general numerical schemes for computing several eigenvalues of a nonlinear eigenvalue problem, either simultaneously or subsequently. The purpose of this work is to show that the concept of invariant pairs offers a way of representing eigenvalues and eigenvectors that is insensitive to this phenomenon. To demonstrate the use of this concept in the development of numerical methods, we have developed a novel block Newton method for computing such invariant pairs. Algorithmic aspects of this method are considered and a few academic examples demonstrate its viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil P.-A., Mahony R., Sepulchre R., Van Dooren P.: A Grassmann–Rayleigh quotient iteration for computing invariant subspaces. SIAM Rev. 44(1), 57–73 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bai, Z., Demmel, J.W., Dongarra, J.J., Ruhe, A., van der Vorst, H (ed.).: Templates for the Solution of Algebraic Eigenvalue Problems: Software, Environments, and Tools. SIAM, Philadelphia (2000)

  3. Benzi M., Golub G.H., Liesen J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Betcke M., Voss H.: Stationary Schrödinger equations governing electronic states of quantum dots in the presence of spin-orbit splitting. Appl. Math. 52(3), 267–284 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Betcke M.M., Voss H.: Restarting projection methods for rational eigenproblems arising in fluid-solid vibrations. Math. Model. Anal. 13(2), 171–182 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Betcke, T., Kressner, D.: Perturbation, computation and refinement of invariant pairs for matrix polynomials. Technical report 2009-21, seminar for applied mathematics, ETH Zurich, July 2009

  7. Betcke T., Voss H.: A Jacobi-Davidson type projection method for nonlinear eigenvalue problems. Future Gener. Comput. Syst. 20, 363–372 (2004)

    Article  Google Scholar 

  8. Beyn, W.-J., Kleß, W., Thümmler, V.: Continuation of low-dimensional invariant subspaces in dynamical systems of large dimension. In: Ergodic theory, analysis, and efficient simulation of dynamical systems, pp. 47–72. Springer, Berlin (2001)

  9. Beyn, W.-J., Thümmler, V.: Continuation of invariant subspaces for parameterized quadratic eigenvalue problems. Technical report, University of Bielefeld, Department of Mathematics (2008)

  10. Chatelin, F.: Simultaneous Newton’s iteration for the eigenproblem. In: Defect correction methods (Oberwolfach, 1983), volume 5 of Comput. Suppl., pp. 67–74. Springer, Vienna (1984)

  11. Demmel J.W.: Three methods for refining estimates of invariant subspaces. Computing 38, 43–57 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dennis J.E. Jr, Traub J.F., Weber R.P.: The algebraic theory of matrix polynomials. SIAM J. Numer. Anal. 13(6), 831–845 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gaier D.: Vorlesungen über Approximation im Komplexen. Birkhäuser Verlag, Basel (1980)

    MATH  Google Scholar 

  14. Gohberg, I., Lancaster, P., Rodman, L.: Matrix Polynomials. Academic Press. [Harcourt Brace Jovanovich Publishers], New York, Computer Science and Applied Mathematics (1982)

  15. Green K., Wagenknecht T.: Pseudospectra and delay differential equations. J. Comput. Appl. Math. 196(2), 567–578 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Higham, N.J.: Functions of Matrices. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

  17. Krantz S.G.: Function Theory of Several Complex Variables. Wiley, New York (1982)

    MATH  Google Scholar 

  18. Mathias R.: A chain rule for matrix functions and applications. SIAM J. Matrix Anal. Appl. 17(3), 610–620 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Meerbergen K.: Locking and restarting quadratic eigenvalue solvers. SIAM J. Sci. Comput. 22(5), 1814–1839 (2000)

    Article  MathSciNet  Google Scholar 

  20. Mehrmann, V., Voss, H.: Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM Mitteilungen 27 (2004)

  21. Michiels, W., Niculescu, S.-I.: Stability and Stabilization of Time-delay Systems, vol. 12 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)

  22. Najfeld I., Havel T.F.: Derivatives of the matrix exponential and their computation. Adv. Appl. Math. 16, 321–375 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sleijpen G.L.G., Booten A.G.L., Fokkema D.R., Van der Vorst H.A.: Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36(3), 595–633 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Solovev S.I.: Preconditioned iterative methods for a class of nonlinear eigenvalue problems. Linear Algebra Appl. 415(1), 210–229 (2006)

    Article  MathSciNet  Google Scholar 

  25. Stewart G.W., Sun J.-G.: Matrix Perturbation Theory. Academic Press, New York (1990)

    MATH  Google Scholar 

  26. Voss H.: A maxmin principle for nonlinear eigenvalue problems with application to a rational spectral problem in fluid-solid vibration. Appl. Math. 48(6), 607–622 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Voss H.: An Arnoldi method for nonlinear eigenvalue problems. BIT 44(2), 387–401 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Voss, H.: A Jacobi-Davidson method for nonlinear eigenproblems. In: Computational Science—ICCS 2004. Part II, vol. 3037 of Lecture Notes in Computer Science, pp. 34–41. Springer, Berlin (2004)

  29. Voss H.: Iterative projection methods for computing relevant energy states of a quantum dot. J. Comput. Phys. 217(2), 824–833 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Voss H.: A Jacobi-Davidson method for nonlinear and nonsymmetric eigenproblems. Comput. Struct. 85(17/18), 1284–1292 (2007)

    Article  MathSciNet  Google Scholar 

  31. Voss H., Werner B.: A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems. Math. Methods Appl. Sci. 4(3), 415–424 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Kressner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kressner, D. A block Newton method for nonlinear eigenvalue problems. Numer. Math. 114, 355–372 (2009). https://doi.org/10.1007/s00211-009-0259-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0259-x

Mathematics Subject Classification (2000)

Navigation