Skip to main content
Log in

A linear eigenvalue algorithm for the nonlinear eigenvalue problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The Arnoldi method for standard eigenvalue problems possesses several attractive properties making it robust, reliable and efficient for many problems. The first result of this paper is a characterization of the solutions to an arbitrary (analytic) nonlinear eigenvalue problem (NEP) as the reciprocal eigenvalues of an infinite dimensional operator denoted \({\mathcal {B}}\) . We consider the Arnoldi method for the operator \({\mathcal {B}}\) and show that with a particular choice of starting function and a particular choice of scalar product, the structure of the operator can be exploited in a very effective way. The structure of the operator is such that when the Arnoldi method is started with a constant function, the iterates will be polynomials. For a large class of NEPs, we show that we can carry out the infinite dimensional Arnoldi algorithm for the operator \({\mathcal {B}}\) in arithmetic based on standard linear algebra operations on vectors and matrices of finite size. This is achieved by representing the polynomials by vector coefficients. The resulting algorithm is by construction such that it is completely equivalent to the standard Arnoldi method and also inherits many of its attractive properties, which are illustrated with examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnoldi W.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9, 17–29 (1951)

    MathSciNet  MATH  Google Scholar 

  2. Asakura J., Sakurai T., Tadano H., Ikegami T., Kimura K.: A numerical method for nonlinear eigenvalue problems using contour integrals. JSIAM Lett. 1, 52–55 (2009)

    Google Scholar 

  3. Bai Z., Su Y.: SOAR: A second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 26(3), 640–659 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: a collection of nonlinear eigenvalue problems. Technical report, University of Manchester (2010)

  5. Beyn, W.J.: An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl. (2011, in press). doi:10.1016/j.laa.2011.03.030

  6. Breda D., Maset S., Vermiglio R.: Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions. Appl. Numer. Math. 56, 318–331 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fassbender H., Mackey D., Mackey N., Schröder C.: Structured polynomial eigenproblems related to time-delay systems. Electron. Trans. Numer. Anal. 31, 306–330 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Gohberg I., Lancaster P., Rodman L.: Matrix polynomials. Academic press, New York (1982)

    MATH  Google Scholar 

  9. Hale J., Verduyn Lunel S.M.: Introduction to functional differential equations. Springer, Berlin (1993)

    MATH  Google Scholar 

  10. Hochstenbach M.E., Sleijpen G.L.: Harmonic and refined Rayleigh–Ritz for the polynomial eigenvalue problem. Numer. Linear Algebra Appl. 15(1), 35–54 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jarlebring E., Meerbergen K., Michiels W.: A Krylov method for the delay eigenvalue problem. SIAM J. Sci. Comput. 32(6), 3278–3300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kressner D.: A block Newton method for nonlinear eigenvalue problems. Numer. Math. 114(2), 355–372 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kressner D., Schröder C., Watkins D.S.: Implicit QR algorithms for palindromic and even eigenvalue problems. Numer. Algorithms 51(2), 209–238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lehoucq R., Sorensen D., Yang C.: ARPACK user’s guide. Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM publications, Philadelphia (1998)

    MATH  Google Scholar 

  15. Liao B.-S., Bai Z., Lee L.-Q., Ko K.: Nonlinear Rayleigh–Ritz iterative method for solving large scale nonlinear eigenvalue problems. Taiwan. J. Math. 14(3), 869–883 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Mackey D., Mackey N., Mehl C., Mehrmann V.: Numerical methods for palindromic eigenvalue problems: Computing the anti-triangular Schur form. Numer. Linear Algebra 16, 63–86 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meerbergen K.: The quadratic Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 30(4), 1463–1482 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mehrmann V., Voss H.: Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM Mitteilungen 27, 121–152 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Neumaier A.: Residual inverse iteration for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 22, 914–923 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peters G., Wilkinson J.: Inverse iterations, ill-conditioned equations and Newton’s method. SIAM Rev. 21, 339–360 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ruhe A.: Algorithms for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 10, 674–689 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sleijpen G.L., Booten A.G., Fokkema D.R., van der Vorst H.A.: Jacobi–Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36(3), 595–633 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Su, Y., Bai, Z.: Solving rational eigenvalue problems via linearization. Technical report, Department of Computer Science and Mathematics, University of California, Davis (2008)

  24. Trefethen L.N.: Spectral Methods in MATLAB. SIAM Publications, Philadelphia (2000)

    Book  MATH  Google Scholar 

  25. Unger, H.: Nichtlineare Behandlung von Eigenwertaufgaben. Z. Angew. Math. Mech. 30, 281–282 (1950). English translation: http://www.math.tu-dresden.de/~schwetli/Unger.html

  26. Voss H.: An Arnoldi method for nonlinear eigenvalue problems. BIT 44, 387–401 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Jarlebring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarlebring, E., Michiels, W. & Meerbergen, K. A linear eigenvalue algorithm for the nonlinear eigenvalue problem. Numer. Math. 122, 169–195 (2012). https://doi.org/10.1007/s00211-012-0453-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0453-0

Mathematics Subject Classification

Navigation