Skip to main content
Log in

Covariance regularity and \(\mathcal {H}\)-matrix approximation for rough random fields

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In an open, bounded domain \(\mathrm{D}\subset {\mathbb R}^n\) with smooth boundary \(\partial \mathrm{D}\) or on a smooth, closed and compact, Riemannian n-manifold \(\mathcal {M}\subset {\mathbb R}^{n+1}\), we consider the linear operator equation \(A u = f\) where A is a boundedly invertible, strongly elliptic pseudodifferential operator of order \(r\in {\mathbb R}\) with analytic coefficients, covering all linear, second order elliptic PDEs as well as their boundary reductions. Here, \(f\in L^2(\Omega ;H^t)\) is an \(H^t\)-valued random field with finite second moments, with \(H^t\) denoting the (isotropic) Sobolev space of (not necessarily integer) order t modelled on the domain \(\mathrm{D}\) or manifold \(\mathcal {M}\), respectively. We prove that the random solution’s covariance kernel \(K_u = (A^{-1}\otimes A^{-1})K_f\) on \(\mathrm{D}\times \mathrm{D}\) (resp. \(\mathcal {M} \times \mathcal {M}\)) is an asymptotically smooth function provided that the covariance function \(K_f\) of the random data is a Schwartz distributional kernel of an elliptic pseudodifferential operator. As a consequence, numerical \(\mathcal {H}\)-matrix calculus allows the deterministic approximation of singular covariances \(K_u\) of the random solution \(u=A^{-1}f \in L^2(\Omega ;H^{t-r})\) in \(\mathrm{D}\times \mathrm{D}\) \((\text {resp. } \mathcal {M} \times \mathcal {M})\) with work versus accuracy essentially equal to that for the mean field approximation with splines of fixed order \(\mathrm{D}\) \((\text {resp. } \mathcal {M} )\), overcoming the curse of dimensionality in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonizzoni, F., Buffa, A., Nobile, F.: Moment equations for the mixed formulation of the Hodge Laplacian with stochastic loading term. IMA J. Numer. Anal. 34(4), 1328–1360 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Börm, S.: Efficient numerical methods for non-local operators, vol. 14 of EMS Tracts in Mathematics. \({\cal H}^{2}\)-matrix compression, algorithms and analysis. European Mathematical Society (EMS), Zürich (2010)

  4. De Monvel, L.B., Krée, P.: Pseudo-differential operators and Gevrey classes. Ann. Inst. Fourier (Grenoble), 17(fasc. 1), 295–323 (1967)

  5. Chernov, A., Pham, D.: Sparse tensor product spectral Galerkin BEM for elliptic problems with random input data on a spheroid. Adv. Comput. Math. 41(1), 77–104 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chernov, A., Schwab, C.: First order \(k\)-th moment finite element analysis of nonlinear operator equations with stochastic data. Math. Comp. 82(284), 1859–1888 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Da Prato, G., Zabczyk, J.: Second order partial differential equations in Hilbert spaces. London Mathematical Society Lecture Note Series, vol. 293. Cambridge University Press, Cambridge (2002)

  8. Dölz, J., Harbrecht, H., Peters, M.: \({\cal H}\)-matrix accelerated second moment analysis for potentials with rough correlation. J. Sci. Comput. 65(1), 387–410 (2015)

  9. Eigel, M., Gittelson, C., Schwab, C., Zander, E.: Adaptive stochastic Galerkin FEM. Comp. Meth. Appl. Mech. Eng. 270, 247–269 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2012)

    MATH  Google Scholar 

  11. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \({\cal H}\)-matrices. Computing 70(4), 295–334 (2003)

  12. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulation. J. Comput. Phys. 73, 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Griebel, M., Harbrecht, H.: On the construction of sparse tensor product spaces. Math. Comput. 82(282), 975–994 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grisvard, P.: Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics, vol. 24. Pitman, Boston (1985)

  15. Hackbusch, W.: A sparse matrix arithmetic based on \({\cal H}\)-matrices. Part I: Introduction to \({\cal H}\)-matrices. Computing 62(2), 89–108 (1999)

  16. Hackbusch, W.: Hierarchische Matrizen: Algorithmen und Analysis. Springer, Berlin, Heidelberg (2009)

  17. Hackbusch, W., Khoromskij, B.N.: A sparse \({\cal H}\)-matrix arithmetic. General complexity estimates. J. Comput. Appl. Math. 125(1–2), 479–501 (2000)

  18. Hackbusch, W., Khoromskij, B.N.: A sparse matrix arithmetic based on \({\cal H}\)-matrices. Part I: Application to multi-dimensional problems. Computing 64(1), 27–47 (2000)

    MATH  Google Scholar 

  19. Harbrecht, H.: Second moment analysis for robin boundary value problems on random domains. In: Griebel, M. (Ed.) Singular Phenomena and Scaling in Mathematical Models, pp. 361–382. Springer, Berlin (2013)

  20. Harbrecht, H., Li, J.: First order second moment analysis for stochastic interface problems based on low-rank approximation. ESAIM Math. Model. Numer. Anal. 47(5), 1533–1552 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harbrecht, H., Peters, M., Schneider, R.: On the low-rank approximation by the pivoted Cholesky decomposition. Appl. Numer. Math. 62(4), 428–440 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Harbrecht, H., Peters, M., Siebenmorgen, M.: Combination technique based \(k\)-th moment analysis of elliptic problems with random diffusion. J. Comput. Phys. 252, 128–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harbrecht, H., Peters, M., Siebenmorgen, M.: Efficient approximation of random fields for numerical applications. Numer. Linear Algebra Appl. 22(4), 596–617 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Harbrecht, H., Schneider, R., Schwab, C.: Multilevel frames for sparse tensor product spaces. Numer. Math. 110(2), 199–220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Harbrecht, H., Schneider, R., Schwab, C.: Sparse second moment analysis for elliptic problems in stochastic domains. Numer. Math. 109(3), 385–414 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hörmander, L.: The analysis of linear partial differential operators. I. Classics in Mathematics. Springer, Berlin (2003) [distribution theory and Fourier analysis, Reprint of the second edition. Springer, Berlin (1990); MR1065993 (91m:35001a)]

  27. Hörmander, L.: The analysis of linear partial differential operators. III. Classics in Mathematics. Springer, Berlin (2007) (Pseudo-differential operators, Reprint of the 1994 edition)

  28. Hsiao, G.C., Wendland, W.L.: Boundary integral equations. Applied Mathematical Sciences, vol. 164. Springer, Berlin (2008)

  29. Krée, P.: Les noyaux des opérateurs pseudo-différentiels classiques (OPDC). Ann. Inst. Fourier (Grenoble), 19(fasc. 1), 179–194 (1969)

  30. Kressner, D., Kumar, R., Nobile, F., Tobler, C.: Low-rank tensor approximation for high-order correlation functions of gaussian random fields. SIAM/ASA J. Uncertain. Quantif. 3(1), 393–416 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Matérn, B.: Spatial variation. Lecture Notes in Statistics, 2nd edn., vol. 36. Springer, Berlin (1986)

  32. Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(12–16), 1295–1331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pentenrieder, B., Schwab, C.: \(hp\)-FEM for second moments of elliptic PDEs with stochastic data. I. Analytic regularity. Numer. Methods Partial Differ. Equations 28(5), 1497–1526 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pentenrieder, B., Schwab, C.: \(hp\)-FEM for second moments of elliptic PDEs with stochastic data. II: Exponential convergence for stationary singular covariance functions. Numer. Methods Partial Differ. Equations 28(5), 1527–1557 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rodino, L.: Linear Partial Differ. Oper. Gevrey Spaces. World Scientific Publishing Co. Inc, River Edge (1993)

    Book  Google Scholar 

  37. Schwab, C., Gittelson, C.J.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20, 291–467 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schwab, C., Todor, R.-A.: Sparse finite elements for elliptic problems with stochastic loading. Numer. Math. 95(4), 707–734 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schwab, C., Todor, R.-A.: Sparse finite elements for stochastic elliptic problems–higher order moments. Computing 71(1), 43–63 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Seeley, R.T.: Singular integrals and boundary value problems. Am. J. Math. 88, 781–809 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  41. Seeley, R.T.: Topics in pseudo-differential operators. In: Pseudo-Diff. Operators (C.I.M.E., Stresa, 1968), pp. 167–305. Edizioni Cremonese, Rome (1969)

  42. Shubin, M.A.: Pseudodifferential operators and spectral theory. Springer Series in Soviet Mathematics. Springer, Berlin (1987) (Translated from the Russian by Stig I. Andersson)

  43. Taylor, M.E.: Pseudodifferential operators. Princeton Mathematical Series, vol. 34. Princeton University Press, Princeton (1981)

  44. Tyrtyshnikov, E.: Mosaic sceleton approximation. Calcolo 33, 47–57 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wilkinson, J.H.: Rounding errors in algebraic processes. Prentice Hall, Englewood Cliffs (1963)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Harbrecht.

Additional information

This work was supported in part by the European Research Council AdG Grant STAHDPDE 247277 and by the Swiss National Science Foundation (SNF) through the Project \(\mathcal {H}\)-matrix based first and second moment analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dölz, J., Harbrecht, H. & Schwab, C. Covariance regularity and \(\mathcal {H}\)-matrix approximation for rough random fields. Numer. Math. 135, 1045–1071 (2017). https://doi.org/10.1007/s00211-016-0825-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0825-y

Mathematics Subject Classification

Navigation