Skip to main content
Log in

Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the approximate recovery of multivariate periodic functions from a discrete set of function values taken on a rank-1 lattice. Moreover, the main result is the fact that any (non-)linear reconstruction algorithm taking function values on any integration lattice of size M has a dimension-independent lower bound of \(2^{-(\alpha +1)/2} M^{-\alpha /2}\) when considering the optimal worst-case error with respect to function spaces of (hybrid) mixed smoothness \(\alpha >0\) on the d-torus. We complement this lower bound with upper bounds that coincide up to logarithmic terms. These upper bounds are obtained by a detailed analysis of a rank-1 lattice sampling strategy, where the rank-1 lattices are constructed by a component–by–component method. The lattice (group) structure allows for an efficient approximation of the underlying function from its sampled values using a single one-dimensional fast Fourier transform. This is one reason why these algorithms keep attracting significant interest. We compare our results to recent (almost) optimal methods based upon samples on sparse grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bergmann, R.: The fast Fourier transform and fast wavelet transform for patterns on the torus. Appl. Comput. Harmon. Anal. 35, 39–51 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 1–123 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Byrenheid, G., Dũng, D., Sickel, W., Ullrich, T.: Sampling on energy-norm based sparse grids for the optimal recovery of Sobolev type functions in \({H}^{\gamma }\). J. Approx. Theory 207, 207–231 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing lattice rules based on weighted degree of exactness and worst-case error. Computing 87, 63–89 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cools, R., Nuyens, D.: An overview of fast component-by-component constructions of lattice rules and lattice sequences. PAMM 7, 1022,609–1022,610 (2007)

    Article  Google Scholar 

  6. Dũng, D., Ullrich, T.: N-widths and \(\varepsilon \)-dimensions for high-dimensional approximations. Found. Comput. Math. 13, 965–1003 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dũng, D.: Sampling and cubature on sparse grids based on a B-spline quasi-interpolation. Found. Comput. Math. 16, 1193–1240 (2016)

  8. Dung, D., Temlyakov, V.N., Ullrich, T.: Hyperbolic Cross Approximation. ArXiv e-prints (2015). ArXiv:1601.03978 [math.NA]

  9. Griebel, M., Hamaekers, J.: Fast discrete Fourier transform on generalized sparse grids. In: Garcke, J., Pflüger, D. (eds.) Sparse Grids and Applications—Munich 2012. Lecture Notes in Computational Science and Engineering, vol. 97, pp. 75–107. Springer International Publishing (2014)

  10. Griebel, M., Knapek, S.: Optimized general sparse grid approximation spaces for operator equations. Math. Comput. 78, 2223–2257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hinrichs, A., Markhasin, L., Oettershagen, J., Ullrich, T.: Optimal quasi-Monte Carlo rules on higher order digital nets for the numerical integration of multivariate periodic functions. Numer. Math 134, 163–196 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kämmerer, L.: Reconstructing hyperbolic cross trigonometric polynomials by sampling along rank-1 lattices. SIAM J. Numer. Anal. 51, 2773–2796 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kämmerer, L.: High dimensional fast Fourier transform based on rank-1 lattice sampling. Dissertation. Universitätsverlag Chemnitz (2014). http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-157673

  14. Kämmerer, L.: Reconstructing multivariate trigonometric polynomials from samples along rank-1 lattices. In: G.E. Fasshauer, L.L. Schumaker (eds.) Approximation Theory XIV: San Antonio 2013, pp. 255–271. Springer International Publishing (2014)

  15. Kämmerer, L.: Multiple rank-1 lattices as sampling schemes for multivariate trigonometric polynomials. J. Fourier Anal. Appl. 1–28 (2016). doi:10.1007/s00041-016-9520-8

  16. Kämmerer, L., Kunis, S., Potts, D.: Interpolation lattices for hyperbolic cross trigonometric polynomials. J. Complex. 28, 76–92 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kämmerer, L., Potts, D., Volkmer, T.: Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling. J. Complex. 31, 543–576 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kämmerer, L., Potts, D., Volkmer, T.: Approximation of multivariate periodic functions by trigonometric polynomials based on sampling along rank-1 lattice with generating vector of Korobov form. J. Complex. 31, 424–456 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Knapek, S.: Approximation und Kompression mit Tensorprodukt-Multiskalenräumen. Dissertation, Universität Bonn (2000)

  20. Kühn, T., Sickel, W., Ullrich, T.: Approximation of mixed order Sobolev functions on the d-torus asymptotics, preasymptotics and d-dependence. Constr. Approx. 42, 353–398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Lattice rules for multivariate approximation in the worst-case setting. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 289–330. Springer, Berlin (2006)

    Chapter  Google Scholar 

  22. Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Lattice rule algorithms for multivariate approximation in the average-case setting. J. Complex. 24, 283–323 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuo, F.Y., Wasilkowski, G.W., Woźniakowski, H.: Lattice algorithms for multivariate \(L_{\infty }\) approximation in the worst-case setting. Constr. Approx. 30, 475–493 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, D., Hickernell, F.J.: Trigonometric spectral collocation methods on lattices. In: Recent Advances in Scientific Computing and Partial Differential Equations, Hong Kong, 2002. Contemporary Mathematics, vol. 330, pp. 121–132. American Mathematical Society, Providence (2003)

  25. Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Am. Math. Soc. 84, 957–1041 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schmeisser, H.J., Triebel, H.: Topics in Fourier Analysis and Function Spaces. Wiley, Chichester (1987)

    MATH  Google Scholar 

  27. Sickel, W., Ullrich, T.: The Smolyak algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness. East J. Approx. 13, 387–425 (2007)

    MathSciNet  Google Scholar 

  28. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford Science Publications, New York (1994)

    MATH  Google Scholar 

  29. Sloan, I.H., Reztsov, A.V.: Component-by-component construction of good lattice rules. Math. Comput. 71, 263–273 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Temlyakov, V.N.: Reconstruction of periodic functions of several variables from the values at the nodes of number-theoretic nets. Anal. Math. 12, 287–305 (1986). In Russian

    Article  MathSciNet  MATH  Google Scholar 

  31. Temlyakov, V.N.: Approximation of functions with bounded mixed derivative. Trudy Mat. Inst. Steklov. 178, 3–113 (1986) (In Russian). [English transl. in Proc. Steklov Inst. Math., 1 (1989)]

  32. Temlyakov, V.N.: Approximation of Periodic Functions. Computational Mathematics and Analysis Series. Nova Science Publishers Inc., Commack (1993)

    MATH  Google Scholar 

  33. Yserentant, H.: Regularity and Approximability of Electronic Wave Functions. Lecture Notes in Mathematics, vol. 2000. Springer, Berlin (2010)

Download references

Acknowledgements

The authors acknowledge the fruitful discussions with A. Hinrichs, M. Ullrich and R. Bergmann on this topic, especially at the conference “Approximationsmethoden und schnelle Algorithmen” in Hasenwinkel, 2014. Furthermore, the authors thank V.N. Temlyakov for his valuable comments and historical hints on that topic. Especially, the authors thank A. Hinrichs for pointing out an alternative proof argument for the non-optimality of rank-1 lattice sampling, cf. Remark 5. The authors thank the referees for their valuable suggestions and remarks. Moreover, LK and TV gratefully acknowledge the support by the German Research Foundation (DFG) within the Priority Program 1324, project PO 711/10-2. Additionally, TV acknowledges the funding by the European Union and the Free State of Saxony (EFRE/ESF NBest-SF). GB and TU acknowledge the support by the DFG Emmy-Noether programme (UL403/1-1) and the Hausdorff-Center for Mathematics, University of Bonn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Kämmerer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byrenheid, G., Kämmerer, L., Ullrich, T. et al. Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness. Numer. Math. 136, 993–1034 (2017). https://doi.org/10.1007/s00211-016-0861-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0861-7

Mathematics Subject Classification

Navigation