Skip to main content
Log in

Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we present a novel second order in time mixed finite element scheme for the Cahn–Hilliard–Navier–Stokes equations with matched densities. The scheme combines a standard second order Crank–Nicolson method for the Navier–Stokes equations and a modification to the Crank–Nicolson method for the Cahn–Hilliard equation. In particular, a second order Adams-Bashforth extrapolation and a trapezoidal rule are included to help preserve the energy stability natural to the Cahn–Hilliard equation. We show that our scheme is unconditionally energy stable with respect to a modification of the continuous free energy of the PDE system. Specifically, the discrete phase variable is shown to be bounded in \(\ell ^\infty \left( 0,T;L^\infty \right) \) and the discrete chemical potential bounded in \(\ell ^\infty \left( 0,T;L^2\right) \), for any time and space step sizes, in two and three dimensions, and for any finite final time T. We subsequently prove that these variables along with the fluid velocity converge with optimal rates in the appropriate energy norms in both two and three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194(2), 463–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 1150013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aristotelous, A., Karakashian, O., Wise, S.M.: A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn–Hilliard equation and an efficient nonlinear multigrid solver. Discrete Contin. Dyn. Syst. Ser. B 18(9), 2211–2238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baker, G.A.: Galerkin approximations for the Navier–Stokes equations. Widely circulated but never published notes

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  6. Chen, Y., Shen, J.: Efficient, adaptive energy stable schemes for the incompressible Cahn–Hilliard Navier–Stokes phase-field models. J. Comput. Phys. 308, 40–56 (2016)

  7. Chen, W., Liu, Y., Wang, C., Wise, S.M.: Convergence analysis of a fully discrete finite difference scheme for the Cahn–Hilliard–Hele–Shaw equation. Math. Comput. 85(301), 2231–2257 (2016)

  8. Diegel, A., Feng, X., Wise, S.M.: Analysis of a mixed finite element method for a Cahn–Hilliard–Darcy–Stokes system. SIAM J. Numer. Anal. 53(1), 127–152 (2015)

  9. Diegel, A., Wang, C., Wise, S.M.: Stability and convergence of a second-order mixed finite element method for the Cahn–Hilliard equation. IMA J. Numer. Anal. 36, 1867–1897 (2016)

  10. Elliott, C.M., Stinner, B., Styles, V., Welford, R.: Numerical computation of advection and diffusion on evolving diffuse interfaces. IMA J. Numer. Anal. 31, 786–812 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, X.: Fully discrete finite element approximations of the Navier–Stokes–Cahn–Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44(3), 1049–1072 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feng, X., Wise, S.M.: Analysis of a Darcy–Cahn–Hilliard diffuse interface model for the Hele–Shaw flow and its fully discrete finite element approximation. SIAM J. Numer. Anal. 50(3), 1320–1343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feng, X., He, Y., Liu, C.: Analysis of finite element approximations of a phase field model for two-phase fluids. Math. Comput. 76, 539–571 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garcke, H., Hinze, M., Kahle, C.: A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow. Appl. Numer. Math. 99, 151–171 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grün, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 51(6), 3036–3061 (2013)

  16. Grün, G., Klingbeil, F.: Two-phase flow with mass density contrast: Stable schemes for a thermodynamic consistent and frame indifferent diffuse-interface model. J. Comput. Phys. 257, 708–725 (2014)

  17. Guo, Z., Lin, P., Lowengrub, J.S.: A numerical method for the quasi-incompressible Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy law. J. Comput. Phys. 276, 486–507 (2014)

  18. Guo, J., Wang, C., Wise, S., Yue, X.: An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation. Commun. Math. Sci. 14, 489–515 (2016)

  19. Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6, 815–831 (1996)

  20. Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn–Hilliard–Navier–Stokes equation. J. Comput. Phys. 290, 139–156 (2015)

  21. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

  22. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. IV. Error analysis for the second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

  23. Hintermueller, M., Hinze, M., Kahle, C.: An adaptive finite element Moreau–Yosida-based solver for a coupled Cahn–Hilliard/Navier–Stokes system. J. Comput. Phys. 235, 810–827 (2013)

  24. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49(3), 435 (1977)

  25. Hua, J., Lin, P., Liu, C., Wang, Q.: Energy law preserving \(C^0\) finite element schemes for phase field models in two-phase flow computations. J. Comput. Phys. 230(19), 7115–7131 (2011)

  26. Kay, D., Welford, R.: Efficient numerical solution of Cahn–Hilliard–Navier–Stokes fluids in 2D. SIAM J. Sci. Comput. 29(6), 2241–2257 (2007)

  27. Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn–Hilliard–Navier–Stokes system. Interfaces Free Bound. 10(1), 15–43 (2008)

  28. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193(2), 511–543 (2004)

  29. Layton, W.: Introduction to the Numerical Analysis of Incompressible Viscous Flows. SIAM, Philadelphia (2008)

  30. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179, 211–228 (2003)

  31. Liu, Y., Chen, W., Wang, C., Wise, S.M.: Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system. Numer. Math. 135(3), 679–709 (2017)

  32. Lowengrub, J.S., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617–2654 (1998)

  33. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. Ser. A 28, 1669–1691 (2010)

  34. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)

  35. Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015)

  36. Temam, R.: Behaviour at time \(t = 0\) of the solutions of semi-linear evolution equations. J. Differ. Equ. 43, 73–92 (1982)

  37. Wang, X., Wu, H.: Long-time behavior for the Hele–Shaw–Cahn–Hilliard system. Asymptot. Anal. 78(4), 217–245 (2012)

  38. Wang, X., Zhang, Z.: Well-posedness of the Hele–Shaw–Cahn–Hilliard system. Ann. Inst. H. Poincare Anal. Non Lineaire 30(3), 367–384 (2013)

  39. Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations. J. Sci. Comput. 44, 38–68 (2010)

Download references

Acknowledgements

This work is supported in part by the Grants NSF DMS-1418689 (C. Wang), NSFC 11271281 (C. Wang), NSF DMS-1418692 (S. Wise), NSF DMS-1008852 (X. Wang), and NSF DMS-1312701 (X. Wang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda E. Diegel.

Some discrete Gronwall inequalities

Some discrete Gronwall inequalities

We will need the following discrete Gronwall inequality cited in [22, 29]:

Lemma 4.1

Fix \(T>0\). Let M be a positive integer, and define \(\tau \le \frac{T}{M}\). Suppose \(\left\{ a_m\right\} _{m=0}^M\), \(\left\{ b_m\right\} _{m=0}^M\) and \(\left\{ c_m\right\} _{m=0}^{M-1}\) are non-negative sequences such that \(\tau \sum _{m=0}^{M-1} c_m \le C_1\), where \(C_1\) is independent of \(\tau \) and M. Further suppose that,

$$\begin{aligned} a_\ell + \tau \sum _{m=0}^{\ell } b_m \le C_2 +\tau \sum _{m=0}^{\ell -1} a_m c_m, \quad \forall \, 1\le \ell \le M, \end{aligned}$$
(4.1)

where \(C_2>0\) is a constant independent of \(\tau \) and M. Then, for all \(\tau >0\),

$$\begin{aligned} a_\ell +\tau \sum _{m=0}^{\ell } b_m \le C_2 \exp \left( \tau \sum _{m=0}^{\ell -1}c_m \right) \le C_2\exp (C_1), \quad \forall \, 1\le \ell \le M. \end{aligned}$$
(4.2)

Note that the sum on the right-hand-side of (4.1) must be explicit.

In addition, the following more general discrete Gronwall inequality is needed in the stability analysis.

Lemma 4.2

Fix \(T>0\). Let M be a positive integer, and define \(\tau \le \frac{T}{M}\). Suppose \(\left\{ a_m\right\} _{m=0}^M\), \(\left\{ b_m\right\} _{m=0}^M\) and \(\left\{ c_m\right\} _{m=0}^{M-1}\) are non-negative sequences such that \(\tau \sum _{m=0}^{M-1} c_m \le C_1\), where \(C_1\) is independent of \(\tau \) and M. Suppose that, for all \(\tau >0\) and for some constant \(0< \alpha < 1\),

$$\begin{aligned} a_\ell + \tau \sum _{m=0}^{\ell } b_m \le C_2 +\tau \sum _{m=0}^{\ell -1} c_m \sum _{j=0}^m \alpha ^{m-j} a_j, \quad \forall \, 1\le \ell \le M, \end{aligned}$$
(4.3)

where \(C_2>0\) is a constant independent of \(\tau \) and M. Then, for all \(\tau >0\),

$$\begin{aligned} a_\ell +\tau \sum _{m=0}^{\ell } b_m \le ( C_2 + a_0 C_1) \exp \left( \frac{C_1}{1-\alpha }\right) , \quad \forall \, 1\le \ell \le M. \end{aligned}$$
(4.4)

Proof

We set \(A_\alpha := \frac{1}{1-\alpha } > 1\). A careful application of induction, using (4.3), yields the following inequality:

$$\begin{aligned} a_\ell +\tau \sum _{m=0}^{\ell } b_m \le \prod _{m=1}^\ell d_{\ell ,m}, \quad \forall \, 1\le \ell \le M, \end{aligned}$$
(4.5)

where

$$\begin{aligned} d_{\ell ,m} = \left\{ \begin{array}{l@{\quad }l@{\quad }l} \prod _{k=0}^{m-1}\left( 1 + \tau \alpha ^k c_m \right) &{} \text{ if } &{} 1\le m\le \ell -1 \\ C_2 + a_0 \tau \sum _{k=0}^{\ell -1} c_k \alpha ^k &{} \text{ if } &{} m =\ell \end{array} \right. . \end{aligned}$$
(4.6)

Meanwhile, the following bound is available:

$$\begin{aligned} d_{\ell ,m} =&\ ( 1 + \tau c_m ) ( 1 + \alpha \tau c_m ) \cdots ( 1 + \alpha ^{m-1} \tau c_m ) \nonumber \\ \le&\ \exp ( \tau c_m ) \exp ( \alpha \tau c_k ) \cdots \exp ( \alpha ^{m-1} \tau c_m ) \nonumber \\ =&\ \exp \left( \tau ( 1 + \alpha + \cdots + \alpha ^{m-1} ) c_m \right) \le \exp \left( A_\alpha c_m \tau \right) , \quad \forall \, 1\le m < \ell -1, \end{aligned}$$
(4.7)

which in turn leads to

$$\begin{aligned} d_{\ell ,1} d_{\ell ,2} \cdots d_{\ell ,\ell -1} \le&\ \mathrm{e}^{A_\alpha c_1 \tau } \mathrm{e}^{A_\alpha c_2 \tau } \cdots \mathrm{e}^{A_\alpha c^{\ell -1} \tau } \nonumber \\ \le&\ \exp \left( A_\alpha \tau ( c_1 + c_2 + \cdots + c_{\ell -1} ) \right) \le \exp ( A_\alpha C_1 ). \end{aligned}$$
(4.8)

On the other hand, we also have

$$\begin{aligned} d_{\ell ,\ell }&= C_2 + a_0 \tau \left( c_0 + c_1 \alpha + \cdots + c_{\ell -1} \alpha ^{\ell -1} \right) \nonumber \\&\le \ C_2 + a_0 \tau \left( c_0 + c_1 + \cdots + c^{\ell -1} \right) \le C_2 + a_0 C_1. \end{aligned}$$
(4.9)

In turn, a substitution of (4.8) and (4.9) into (4.6) results in (4.4), the desired estimate. The proof of Lemma 4.2 is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diegel, A.E., Wang, C., Wang, X. et al. Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137, 495–534 (2017). https://doi.org/10.1007/s00211-017-0887-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0887-5

Mathematics Subject Classification

Navigation