Skip to main content
Log in

Resolution of the implicit Euler scheme for the Navier–Stokes equation through a least-squares method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This work analyzes a least-squares method in order to solve implicit time schemes associated to the 2D and 3D Navier–Stokes system, introduced in 1979 by Bristeau, Glowinksi, Periaux, Perrier and Pironneau. Implicit time schemes reduce the numerical resolution of the Navier–Stokes system to multiple resolutions of steady Navier–Stokes equations. We first construct a minimizing sequence (by a gradient type method) for the least-squares functional which converges strongly and quadratically toward a solution of a steady Navier–Stokes equation from any initial guess. The method turns out to be related to the globally convergent damped Newton approach applied to the Navier–Stokes operator. Then, we apply iteratively the analysis on the fully implicit Euler scheme and show the convergence of the method uniformly with respect to the time discretization. Numerical experiments for 2D examples support our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bochev, P.B., Gunzburger, M.D.: Least-squares Finite Element Methods, Applied Mathematical Sciences, vol. 166. Springer, New York (2009)

    MATH  Google Scholar 

  2. Bristeau, M.O., Pironneau, O., Glowinski, R., Periaux, J., Perrier, P.: On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods. I. Least square formulations and conjugate gradient. Comput. Methods Appl. Mech. Engrg. 17/18(3), 619–657 (1979)

    Article  Google Scholar 

  3. Deuflhard, P.: Newton methods for Nonlinear Problems, Springer Series in Computational Mathematics, vol. 35, Springer, Heidelberg, (2011), Affine invariance and adaptive algorithms, First softcover printing of the 2006 corrected printing

  4. Girault, V.: Raviart, Pierre-Arnaud: Finite Element Methods for Navier–Stokes equations, Springer Series in Computational Mathematics. Theory and Algorithms, vol. 5. Springer-Verlag, Berlin (1986)

    Google Scholar 

  5. Glowinski, R., Guidoboni, G., Pan, T.-W.: Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity. J. Comput. Phys. 216(1), 76–91 (2006)

    Article  MathSciNet  Google Scholar 

  6. Glowinski, R.: Finite Element Methods for Incompressible Viscous Flow, Numerical Methods for Fluids (Part 3), Handbook of Numerical Analysis, vol. 9, Elsevier, pp. 3 – 1176 (2003)

  7. Glowinski, R.: Variational methods for the numerical solution of nonlinear elliptic problems, In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 86, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2015)

  8. Hecht, F.: New development in Freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Jiang, B.-N., Povinelli, L.A.: Least-squares finite element method for fluid dynamics. Comput. Methods Appl. Mech. Eng. 81(1), 13–37 (1990)

    Article  MathSciNet  Google Scholar 

  10. Kim, S.D., Lee, Y.H., Shin, B.C., Sang Dong Kim: Newton’s method for the Navier–Stokes equations with finite-element initial guess of Stokes equations. Comput. Math. Appl. 51(5), 805–816 (2006)

    Article  MathSciNet  Google Scholar 

  11. Lemoine, J., Münch, A., Pedregal, P.: Analysis of continuous \({H}^{-1}\)-least-squares approaches for the steady Navier-Stokes system, To appear in Applied Mathematics and Optimization (2021)

  12. Lemoine, J., Münch, A.: A fully space-time least-squares method for the unsteady Navier-Stokes system, Preprint. arXiv:1909.05034

  13. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  14. Münch, A., Pedregal, P.: Numerical null controllability of the heat equation through a least squares and variational approach. Eur. J. Appl. Math. 25(3), 277–306 (2014)

    Article  MathSciNet  Google Scholar 

  15. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, vol. 23. Springer-Verlag, Berlin (1994)

    Book  Google Scholar 

  16. Saramito, P.: A damped Newton algorithm for computing viscoplastic fluid flows. J. Non-Newton. Fluid Mech. 238, 6–15 (2016)

    Article  MathSciNet  Google Scholar 

  17. Smith, A., Silvester, D.: Implicit algorithms and their linearization for the transient incompressible Navier–Stokes equations. IMA J. Numer. Anal. 17(4), 527–545 (1997)

    Article  MathSciNet  Google Scholar 

  18. Tartar, L.: An introduction to Navier-Stokes equation and oceanography, Lecture Notes of the Unione Matematica Italiana, vol. 1, Springer-Verlag, Berlin; UMI, Bologna (2006)

  19. Temam, R.: Navier–Stokes Equations, AMS Chelsea Publishing, Providence, RI, (2001), Theory and numerical analysis, Reprint of the 1984 edition

  20. Tone, F., Wirosoetisno, D.: On the long-time stability of the implicit Euler scheme for the two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 44(1), 29–40 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Münch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemoine, J., Münch, A. Resolution of the implicit Euler scheme for the Navier–Stokes equation through a least-squares method. Numer. Math. 147, 349–391 (2021). https://doi.org/10.1007/s00211-021-01171-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-021-01171-1

Mathematics Subject Classification

Navigation