Skip to main content

Advertisement

Log in

Increased extracellular serotonin level in rat hippocampus induced by chronic citalopram is augmented by subchronic lithium: neurochemical and behavioural studies in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

A substantial number of patients do not respond sufficiently to antidepressant drugs and are therefore often co-medicated with lithium as an augmentation strategy. However, the neurochemical rationale behind this strategy needs to be further clarified.

Objectives

We examined the effect of chronic citalopram and subchronic lithium, alone or in combination, on (a) serum levels of citalopram and lithium, (b) animal behaviour and (c) hippocampal serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels. Furthermore, we examined the serum level of citalopram and hippocampal 5-HT following one acute citalopram injection.

Methods

Microdialysis in the freely moving animals was used to determine hippocampal 5-HT and 5-HIAA. The animal behaviour was examined in the open field and forced swim test.

Results

We found that chronic administration of citalopram (20 mg/kg/24 h s.c.) significantly increased the 5-HT baseline relative to vehicle-treated rats. Addition of subchronic lithium (60 mmol/kg chow pellet p.o.) to chronic citalopram therapy further elevated the 5-HT levels. Moreover, we found acute citalopram (5 mg/kg s.c.) to increase the 5-HT level. The immobility time in the FST and the locomotion in the OF were unaffected by any treatments.

Conclusions

The present results support the assumption that increases in hippocampal 5-HT neurotransmission may be important in the augmentatory effect of lithium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3. A
Fig. 4. A

Similar content being viewed by others

References

  • Bai F, Li X, Clay M, Lindstrom T, Skolnick P (2001) Intra- and interstrain differences in models of "behavioral despair". Pharmacol Biochem Behav 70:187–192

    Article  CAS  PubMed  Google Scholar 

  • Baptista TJ, Hernandez L, Burguera JL, Burguera M, Hoebel BG (1990) Chronic lithium administration enhances serotonin release in the lateral hypothalamus but not in the hippocampus in rats. A microdialysis study. J Neural Transm Gen Sect 82:31–41

    CAS  PubMed  Google Scholar 

  • Bauer M, Dopfmer S (1999) Lithium augmentation in treatment-resistant depression: meta-analysis of placebo-controlled studies. J Clin Psychopharmacol 19:427–434

    Article  CAS  PubMed  Google Scholar 

  • Baumann P, Nil R, Souche A, Montaldi S, Baettig D, Lambert S, Uehlinger C, Kasas A, Amey M, Jonzier-Perey M (1996) A double-blind, placebo-controlled study of citalopram with and without lithium in the treatment of therapy-resistant depressive patients: a clinical, pharmacokinetic, and pharmacogenetic investigation. J Clin Psychopharmacol 16:307–314

    Article  CAS  PubMed  Google Scholar 

  • Bel N, Artigas F (1992) Fluvoxamine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur J Pharmacol 229:101–103

    CAS  PubMed  Google Scholar 

  • Bel N, Artigas F (1993) Chronic treatment with fluvoxamine increases extracellular serotonin in frontal cortex but not in raphe nuclei. Synapse 15:243–245

    CAS  PubMed  Google Scholar 

  • Broderick P, Lynch V (1982) Behavioral and biochemical changes induced by lithium and l-tryptophan in muricidal rats. Neuropharmacology 21:671–679

    Article  CAS  PubMed  Google Scholar 

  • Cappeliez P, White N, Duhamel JR (1982) Effect of serotonin depletion induced by p-chloroamphetamine on changes in rats' activity levels-produced by lithium. Neuropsychobiology 8:129–134

    CAS  PubMed  Google Scholar 

  • Collard KJ, Roberts MH (1975) Proceedings: the effects of chronic lithium administration on the metabolism of l-tryptophan in the rat forebrain. Br J Pharmacol 55:268P

    CAS  PubMed  Google Scholar 

  • Connor TJ, Kelly JP, Leonard BE (1997) Forced swim test-induced neurochemical, endocrine, and immune changes in the rat. Pharmacol Biochem Behav 58:961–967

    Article  CAS  PubMed  Google Scholar 

  • Connor TJ, Kelliher P, Shen Y, Harkin A, Kelly JP, Leonard BE (2000) Effect of subchronic antidepressant treatments on behavioral, neurochemical, and endocrine changes in the forced-swim test. Pharmacol Biochem Behav 65:591–597

    Article  CAS  Google Scholar 

  • Corrodi H, Fuxe K, Hokfelt T, Schou M (1967) The effect of lithium on cerebral monoamine neurons. Psychopharmacology 11:345–353

    CAS  Google Scholar 

  • De Montigny C (1994) Lithium addition in treatment-resistant depression. Int Clin Psychopharmacol 9:S231–S235

    Google Scholar 

  • Detke MJ, Johnson J, Lucki I (1997) Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. Exp Clin Psychopharmacol 5:107–112

    Google Scholar 

  • Dufour H, Bouchacourt M, Thermoz P, Viala A, Phak Rop P, Gouezo F, Durand A, Hopfner Petersen HE (1987) Citalopram—a highly selective 5-HT uptake inhibitor—in the treatment of depressed patients. Int Clin Psychopharmacol 2:225–237

    CAS  Google Scholar 

  • Fuller RW (1994) Uptake inhibitors increase extracellular serotonin concentration measured by brain microdialysis. Life Sci 55:163–167

    CAS  PubMed  Google Scholar 

  • Gorka Z, Wojtasik E, Kwiatek H, Maj J (1979) Action of serotonin mimetics in the behavioral despair test in rats. Commun Psychopharmacol 3:133–136

    CAS  PubMed  Google Scholar 

  • Grahame-Smith DG, Green AR (1974) The role of brain 5-hydroxytryptamine in the hyperactivity produced in rats by lithium and monoamine oxidase inhibition. Br J Pharmacol 52:19–26

    CAS  PubMed  Google Scholar 

  • Grof P (1998) Has the effectiveness of lithium changed? Impact of the variety of lithium's effects. Neuropsychopharmacology 19:183–188

    Article  CAS  PubMed  Google Scholar 

  • Grove WM, Andreasen NC (1982) Simultaneous tests of many hypotheses in exploratory research. J Nerv Ment Dis 170:3–8

    CAS  PubMed  Google Scholar 

  • Haddjeri N, Szabo ST, De Montigny C, Blier P (2000) Increased tonic activation of rat forebrain 5-HT(1A) receptors by lithium addition to antidepressant treatments. Neuropsychopharmacology 22:346–356

    Article  CAS  PubMed  Google Scholar 

  • Hascoet M, Bourin M, Khimake S (1994) Additive effect of lithium and clonidine with 5-HT1A agonists in the forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry 18:381–396

    Article  CAS  PubMed  Google Scholar 

  • Ho AK, Loh HH, Craves F, Hitzemann RJ, Gershon S (1970) The effect of prolonged lithium treatment on the synthesis rate and turnover of monoamines in brain regions of rats. Eur J Pharmacol 10:72–78

    Article  CAS  Google Scholar 

  • Hyttel J (1994) Pharmacological characterization of selective serotonin reuptake inhibitors (SSRIs). Int Clin Psychopharmacol 9[Suppl 1]:19–26

    Google Scholar 

  • Invernizzi R, Bramante M, Samanin R (1994) Chronic treatment with citalopram facilitates the effect of a challenge dose on cortical serotonin output: role of presynaptic 5-HT1A receptors. Eur J Pharmacol 260:243–246

    CAS  PubMed  Google Scholar 

  • Iwata H, Okamoto H, Kuramoto I (1974) Effect of lithium on serum tryptophan and brain serotonin in rats. Jpn J Pharmacol 24:235–240

    CAS  PubMed  Google Scholar 

  • Jensen J, Thomsen K, Olesen OV (1976) Current determination of lithium-induced minimum sodium requirement in rats. Psychopharmacology 45:295–299

    CAS  Google Scholar 

  • Jordan S, Kramer GL, Zukas PK, Petty F (1994) Previous stress increases in vivo biogenic amine response to swim stress. Neurochem Res 19:1521–1525

    CAS  PubMed  Google Scholar 

  • Karoum F, Korpi ER, Chuang LW, Linnoila M, Wyatt RJ (1986) The effects of desipramine, zimelidine, electroconvulsive treatment and lithium on rat brain biogenic amines: a comparison with peripheral changes. Eur J Pharmacol 121:377–385

    Article  CAS  PubMed  Google Scholar 

  • Katona CL (1988) Lithium augmentation in refractory depression. Psychiatr Dev 6:153–171

    CAS  PubMed  Google Scholar 

  • Kofman O, Patishi Y (1999) Interactions of lithium and drugs that affect signal transduction on behaviour in rats. Eur Neuropsychopharmacol 9:385–397

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rubalcava C, Lucki I (2000) Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test. Neuropsychopharmacology 22:191–199

    Google Scholar 

  • Maes M, Meltzer HY (1995) The serotonin hypothesis of major depression. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 933–944

    Google Scholar 

  • Maj J, Rogoz Z, Skuza G (1982) Fluvoxamine, a new antidepressant drug, fails to show antiserotonin activity. Eur J Pharmacol 81:287–292

    Article  CAS  PubMed  Google Scholar 

  • Mandell AJ, Knapp S (1980) Asymmetry and mood, emergent properties of serotonin regulation: a mechanism of action of lithium. In: Cooper T, Gershon S, Kline NS, Schou M (eds) Lithium controversies and unresolved issues. Excerpta Medica, Amsterdam, pp 789–814

  • Massot O, Rousselle JC, Fillion MP, Januel D, Plantefol M, Fillion G (1999) 5-HT1B receptors: a novel target for lithium. Possible involvement in mood disorders. Neuropsychopharmacology 21:530–541

    Article  CAS  Google Scholar 

  • McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22:105–122

    CAS  PubMed  Google Scholar 

  • Mongeau R, Blier P, De Montigny C (1997) The serotonergic and noradrenergic systems of the hippocampus: their interactions and the effects of antidepressant treatments. Brain Res Rev 23:145–195

    CAS  PubMed  Google Scholar 

  • Mork A (1998) Effects of lithium treatment on extracellular serotonin levels in the dorsal hippocampus and wet-dog shakes in the rat. Eur Neuropsychopharmacol 8:267–272

    Article  CAS  PubMed  Google Scholar 

  • Muraki I, Inoue T, Hashimoto S, Izumi T, Ito K, Koyama T (2001) Effect of subchronic lithium treatment on citalopram-induced increases in extracellular concentrations of serotonin in the medial prefrontal cortex. J Neurochem 76:490–497

    Article  CAS  PubMed  Google Scholar 

  • Nixon MK, Hascoet M, Bourin M, Colombel MC (1994) Additive effects of lithium and antidepressants in the forced swimming test: further evidence for involvement of the serotoninergic system. Psychopharmacology 115:59–64

    Google Scholar 

  • Öhman R, Spigset O (1993) Serotonin syndrome induced by fluvoxamine-lithium interaction. Pharmacopsychiatry 26:263–264

    PubMed  Google Scholar 

  • Okamoto Y, Motohasi N, Hayakawa H, Muraoka M, Yamawaki S (1996) Addition of lithium to chronic antidepressant treatment potentiates presynaptic serotonergic function without changes in serotonergic receptors in the rat cerebral cortex. Neuropsychobiology 33:17–20

    CAS  PubMed  Google Scholar 

  • Otero LM, Rubio MC (1986) Time-related response of central serotonergic function to lithium administration. Gen Pharmacol 17:333–337

    PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. 2nd edn. Academic Press, New York

  • Porsolt RD (1979) Animal model of depression. Biomedicine 30:139–140

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Blavet N, Deniel M, Jalfre M (1979) Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol 57:201–210

    CAS  PubMed  Google Scholar 

  • Price LH, Heninger GR (1994) Lithium in the treatment of mood disorders. N Engl J Med 331:591–598

    Article  CAS  PubMed  Google Scholar 

  • Price LH, Charney DS, Delgado PL, Heninger GR (1990) Lithium and serotonin function: implications for the serotonin hypothesis of depression. Psychopharmacology 100:3–12

    CAS  PubMed  Google Scholar 

  • Rouillon F, Gorwood P (1998) The use of lithium to augment antidepressant medication. J Clin Psychiatry 59:S532–539

    Google Scholar 

  • Sanchez C, Meier E (1997) Behavioral profiles of SSRIs in animal models of depression, anxiety and aggression. Are they all alike? Psychopharmacology 129:197–205

    CAS  PubMed  Google Scholar 

  • Satoh H, Mori J, Shimomura K, Ono T, Kikuchi H (1984) Effect of zimeldine, a new antidepressant, on the forced swimming test in rats. Jpn J Pharmacol 35:471–473

    PubMed  Google Scholar 

  • Schou M (1991) Clinical aspects of lithium in psychiatry. In: Birch NJ (ed) Lithium and the cell: pharmacology and biochemistry. Academic Press, London, pp 1–6

    Google Scholar 

  • Sharp T, Bramwell SR, Lambert P, Grahame Smith DG (1991) Effect of short- and long-term administration of lithium on the release of endogenous 5-HT in the hippocampus of the rat in vivo and in vitro. Neuropharmacology 30:977–984

    Article  CAS  PubMed  Google Scholar 

  • Sheard MH, Aghajanian GK (1970) Neuronally activated metabolism of brain serotonin: effect of lithium. Life Sci 9:285–290

    Article  CAS  PubMed  Google Scholar 

  • Smith DF (1975) Biogenic amines and the effect of short term lithium administration on open field activity in rats. Psychopharmacology 41:295–300

    CAS  Google Scholar 

  • Sternbach H (1991) The serotonin syndrome. Am J Psychiatry 148:705–713

    CAS  PubMed  Google Scholar 

  • Thase ME, Howland RH, Friedman ES (1998) Treating antidepressant nonresponders with augmentation strategies: an overview. J Clin Psychiatry 59[Suppl 5]:5–12

  • van Praag HM, Korf J, Dols LCW, Schut T (1972) A pilot study of the predictive value of probenecid test in application of 5-hydroxytryptophan as antidepressant. Psychopharmacology 25:14–21

    Google Scholar 

  • Waldmeier PC (1990) Mechanisms of action of lithium in affective disorders: a status report. Pharmacol Toxicol 66[Suppl 3]:121–132

    Google Scholar 

  • Wegener G, Linnet K, Rosenberg R, Mork A (2000) The effect of acute citalopram on extracellular 5-HT levels is not augmented by lithium: an in vivo microdialysis study. Brain Res 871:338–342

    Article  CAS  PubMed  Google Scholar 

  • West HL, Mark GP, Hoebel BG (1991) Effects of conditioned taste aversion on extracellular serotonin in the lateral hypothalamus and hippocampus of freely moving rats. Brain Res 556:95–100

    CAS  PubMed  Google Scholar 

  • Willner P (1984) The validity of animal models of depression. Psychopharmacology 83:1–16

    CAS  PubMed  Google Scholar 

  • Willner P (1994) Animal models of depression. In: den Boer JA (ed) Handbook of depression and anxiety: a biological approach. Cambridge University Press, pp 291–316

    Google Scholar 

  • Worrall EP, Moody JP, Peet M, Dick P, Smith A, Chambers C, Adams M, Naylor GJ (1979) Controlled studies of the acute antidepressant effects of lithium. Br J Psychiatry 135:255–262

    CAS  PubMed  Google Scholar 

  • Zall H, Therman PG, Myers JM (1968) Lithium carbonate: a clinical study. Am J Psychiatry 125:549–555

    CAS  Google Scholar 

  • Zullino D, Baumann P (2001) Lithium augmentation in depressive patients not responding to selective serotonin reuptake inhibitors. Pharmacopsychiatry 34:119–127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from The Novo Nordisk Foundation (2000.12.07), Fonden til forskning af Sindslidelser (2001), Psykiatrisk Forskningsfond (5129.1), Fonden til Laegevidenskabens fremme (01217), Hede Nielsen Fonden (HNP-2001), Einar Geert-Jørgensen & hustrus Legat (1008529) and Max Wørzners mindelegat (58.884). We thank Karen Byrialsen and Uffe Villadsen for constructive comments and Bodil Schmidt for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregers Wegener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wegener, G., Bandpey, Z., Heiberg, I.L. et al. Increased extracellular serotonin level in rat hippocampus induced by chronic citalopram is augmented by subchronic lithium: neurochemical and behavioural studies in the rat. Psychopharmacology 166, 188–194 (2003). https://doi.org/10.1007/s00213-002-1341-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-002-1341-6

Keywords

Navigation