Skip to main content
Log in

Does minocycline, an antibiotic with inhibitory effects on microglial activation, sharpen a sense of trust in social interaction?

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Minocycline has long been applied to various infectious diseases as a tetracycline antibiotic and recently has found new application in the treatment of brain diseases such as stroke and multiple sclerosis. In addition, minocycline has also been suggested as an effective drug for psychiatric diseases. These suggestions imply that minocycline may modulate our mental activities, while the underlying mechanism remains to be clarified.

Objective

To investigate how minocycline influences human mental activity, we experimentally examined how minocycline works on human social decision making in a double-blind randomized trial.

Methods

Forty-nine healthy volunteers were administered minocycline or placebo over four days, after which they played (1) a trust game, in which they decided how much to trust an anonymous partner, and (2) a dictator game, in which they decided how to divide resources between themselves and an anonymous partner.

Results

The minocycline group did not display increased trusting behavior or more altruistic resource allocation. In fact, the minocycline group displayed a slight reduction in trusting behavior. However, the minocycline group did show a strong positive correlation between the degree of risk taking in the trust game and in a separate evaluation of others' trustworthiness, whereas the placebo group showed no such correlation.

Conclusions

These results suggest that minocycline led to more rational decision-making strategies, possibly by increasing emotion regulation. Since minocycline is a well-known inhibitor of microglial activation, our findings may open a new optional pathway for treating mental states in which a component of rational decision making is impaired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Berg J, Dickhaut J, McCabe K (1995) Trust, reciprocity, and social history. Game Econ Behav 10:122–142

    Article  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  PubMed  CAS  Google Scholar 

  • Crockett MJ, Clark L, Tabibnia G, Lieberman MD, Robbins TW (2008) Serotonin modulates behavioral reactions to unfairness. Science 320(5884):1739

    Article  PubMed  CAS  Google Scholar 

  • Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC (2009) Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 50:1801–1807

    Article  PubMed  Google Scholar 

  • Eisenegger C, Naef M, Snozzi R, Heinrichs M, Fehr E (2009) Prejudice and truth about the effect of testosterone on human bargaining behaviour. Nature 463:356–359

    Article  Google Scholar 

  • Forsythe R, Horowitz J, Savin N, Sefton M (1994) Fairness in simple bargaining experiments. Game Econ Behav 6:347–369

    Article  Google Scholar 

  • Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF (2007) Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 21:47–59

    Article  PubMed  CAS  Google Scholar 

  • Gheorghiu MA, Vignoles VL, Smith PB (2009) Beyond the United States and Japan: testing Yamagishi's emancipation theory of trust across 31 nations. Soc Psychol Q 72:365–383

    Article  Google Scholar 

  • Graeber MB (2010) Changing face of microglia. Science 330:783–788

    Article  PubMed  CAS  Google Scholar 

  • Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119:89–105

    Article  PubMed  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Ishima T (2010) A novel target of action of minocycline in NGF-induced neurite outgrowth in PC12 cells: translation initiation [corrected] factor eIF4AI. PLoS One 5:e15430

    Article  PubMed  Google Scholar 

  • He J, Crews FT (2008) Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol 210:349–358

    Article  PubMed  CAS  Google Scholar 

  • Jonas M, Cunha BA (1982) Minocycline. Ther Drug Monit 4:137–145

  • Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E (2005) Oxytocin increases trust in humans. Nature 435(7042):673–676

    Article  PubMed  CAS  Google Scholar 

  • Lee D (2008) Game theory and neural basis of social decision making. Nat Neurosci 11:404–409

    Article  PubMed  CAS  Google Scholar 

  • Levkovitz Y, Mendlovich S, Riwkes S, Braw Y, Levkovitch-Verbin H, Gal G, Fennig S, Treves I, Kron S (2009) A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J Clin Psychiatry 71(2):138–149

    Article  PubMed  Google Scholar 

  • Mann JJ, Apter A, Bertolote J, Beautrais A, Currier D, Haas A, Hegerl U, Lonnqvist J, Malone K, Marusic A, Mehlum L, Patton G, Phillips M, Rutz W, Rihmer Z, Schmidtke A, Shaffer D, Silverman M, Takahashi Y, Varnik A, Wasserman D, Yip P, Hendin H (2005) Suicide prevention strategies: a systematic review. JAMA 294:2064–2074

    Article  PubMed  CAS  Google Scholar 

  • Miller G (2005) Neuroscience. The dark side of glia. Science 308(5723):778–781

    Article  PubMed  CAS  Google Scholar 

  • Miyaoka T (2008) Clinical potential of minocycline for schizophrenia. CNS Neurol Disord Drug Targets 7:376–381

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi H, Takuma K, Fukakusa A, Ito Y, Nakatani A, Ibi D, Kim HC, Yamada K (2008) Improvement by minocycline of methamphetamine-induced impairment of recognition memory in mice. Psychopharmacology 196:233–241

    Article  PubMed  CAS  Google Scholar 

  • Monji A, Kato T, Kanba S (2009) Cytokines and schizophrenia: microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci 63:257–265

    Article  PubMed  CAS  Google Scholar 

  • Munzar P, Li H, Nicholson KL, Wiley JL, Balster RL (2002) Enhancement of the discriminative stimulus effects of phencyclidine by the tetracycline antibiotics doxycycline and minocycline in rats. Psychopharmacology 160:331–336

    Article  PubMed  CAS  Google Scholar 

  • Neigh GN, Karelina K, Glasper ER, Bowers SL, Zhang N, Popovich PG, DeVries AC (2009) Anxiety after cardiac arrest/cardiopulmonary resuscitation: exacerbated by stress and prevented by minocycline. Stroke 40:3601–3607

    Article  PubMed  Google Scholar 

  • Schiavone S, Sorce S, Dubois-Dauphin M, Jaquet V, Colaianna M, Zotti M, Cuomo V, Trabace L, Krause KH (2009) Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats. Biol Psychiatry 66:384–392

    Article  PubMed  CAS  Google Scholar 

  • Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, Iwata Y, Tsuchiya KJ, Suda S, Suzuki K, Kawai M, Takebayashi K, Yamamoto S, Matsuzaki H, Ueki T, Mori N, Gold MS, Cadet JL (2008) Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci 28:5756–5761

    Article  PubMed  CAS  Google Scholar 

  • Sofuoglu M, Mooney M, Kosten T, Waters A, Hashimoto K (2011) Minocycline attenuates subjective rewarding effects of dextroamphetamine in humans. Psychopharmacology 213:61–68

    Article  PubMed  CAS  Google Scholar 

  • Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, Bernstein HG, Bogerts B (2006) Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol 112:305–316

    Article  PubMed  CAS  Google Scholar 

  • Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG, Bogerts B (2008) Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 42:151–157

    Article  PubMed  Google Scholar 

  • Sugama S, Takenouchi T, Fujita M, Conti B, Hashimoto M (2009) Differential microglial activation between acute stress and lipopolysaccharide treatment. J Neuroimmunol 207:24–31

    Article  PubMed  CAS  Google Scholar 

  • Takano A, Arakawa R, Ito H, Tateno A, Takahashi H, Matsumoto R, Okubo Y, Suhara T (2010) Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]DAA1106. Int J Neuropsychopharmacol 13:943–950

    Article  PubMed  CAS  Google Scholar 

  • Tanibuchi Y, Shimagami M, Fukami G, Sekine Y, Iyo M, Hashimoto K (2010) A case of methamphetamine use disorder treated with the antibiotic drug minocycline. Gen Hosp Psychiatry 32(559):e1–e3

    PubMed  Google Scholar 

  • van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS (2008) Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 64:820–822

    Article  PubMed  Google Scholar 

  • Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Lousberg EL, Moldenhauer LM, Hayball JD, Robertson SA, Coller JK, Watkins LR, Somogyi AA, Hutchinson MR (2011) Attenuation of microglial and IL-1 signaling protects mice from acute alcohol-induced sedation and/or motor impairment. Brain Behav Immun 25(Suppl1):S155–S164

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi T, Yamagishi M (1994) Trust and commitment in the United States and Japan. Motiv Emot 18:9–66

    Article  Google Scholar 

  • Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25:181–213

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Grant-in-Aid from JSPS to Motoki Watabe, Takahiro A. Kato, Akira Monji, and Shigenobu Kanba. We thank to Prof. Kazuhide Hashiya and Mr. Katsuhiko Ishikawa (Graduate School of Human-Environment Studies, Kyushu University) for their technical supports.

Conflict of interest

All authors declare that they have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Motoki Watabe or Takahiro A. Kato.

Additional information

Motoki Watabe and Takahiro A. Kato contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

DOC 35 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watabe, M., Kato, T.A., Monji, A. et al. Does minocycline, an antibiotic with inhibitory effects on microglial activation, sharpen a sense of trust in social interaction?. Psychopharmacology 220, 551–557 (2012). https://doi.org/10.1007/s00213-011-2509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2509-8

Keywords

Navigation